
Introduction to Linux
David Robertson

david.m.robertson@ncl.ac.uk

July 1, 2016

Abstract

‘Linux’ is a freely available operating system which runs on a variety of comput-
ers. It’s relatively unknown in the world of desktop computing, despite running on
a vast number of servers, embedded systems and mobile phones (Android). This
course is a hands-on introduction to Linux which assumes no prior experience; we’ll
show why it’s a good environment for technical computing.

We’ll start by explaining what’s different and what’s the same to Windows
and macOS. The bulk of this course is on getting familiar with the ‘terminal’, and
learning how to use it to manage programs efficiently.

Contents
0 What is Linux, anyway? 2

0.1 What’s in it for me? . 3
0.2 About this document . 4

1 Using a graphical interface 4
1.1 Fedora: GNOME shell . 5
1.2 Ubuntu: GNOME classic desktop . 10

2 Getting used to the terminal 15
2.1 Navigation . 16
2.2 General command-line advice . 19

2.2.1 Getting help . 20
2.2.2 Quitting a command and exiting the terminal. 21

2.3 File handling . 22
2.3.1 Creation . 22
2.3.2 Reading and writing files . 23
2.3.3 Only for the brave: nano, vim and emacs 25
2.3.4 Moving, copying and deleting . 26
2.3.5 Running your own programs . 27

2.4 The filesystem . 29
2.4.1 Links . 30
2.4.2 Disk usage . 31

3 More advanced terminal trickery 31
3.1 Searching and replacing . 32

3.1.1 Searching for files and folders . 32
3.1.2 Searching within files . 33
3.1.3 Replacing within files . 34

1

3.2 Pipelines . 36
3.2.1 Streams . 36
3.2.2 Pipes . 38
3.2.3 Redirecting output to file . 39

3.3 Other useful shell functions . 41
3.3.1 Boolean && operator . 41
3.3.2 The clear command . 41
3.3.3 Aliases . 42

4 Automation 43
4.1 Scheduling commands . 43

4.1.1 Specifying the runtime . 44
4.2 Bash shell scripting . 46

4.2.1 Substitution . 47
4.2.2 Handling arguments . 48
4.2.3 Conditionals . 48
4.2.4 Loops . 50
4.2.5 Glob patterns . 52

4.3 Further reading . 53

5 Process control 53
5.1 Background and foreground . 53
5.2 Monitoring . 55

5.2.1 Terminating rogue processes . 57

6 Summary 57

0 What is Linux, anyway?
Linux is an computer operating system, widely used in academia and technical industry.
First released in 1991, it has its roots in the 1970s UNIX operating system. Because
Linux is open-source, absolutely anyone is free to download, copy and modify its source
code. This allows programmers and researchers to test, improve and even attack its
code; the result is an operating system that’s been well-tested and critically analysed
over a number of years. By comparison, the source code for Windows and macOS is
closed: only Apple and Microsoft get to know what goes on behind the curtain.

Strictly speaking, ‘Linux’ refers only to the Linux kernel, the glue between the
computer’s software and hardware. The kernel is responsible for

Hardware management Allowing applications to use the computer’s hardware, e.g.
hard drives or solid state drives; keyboard and mouse input; USB memory sticks;
outputting to the screen; communicating over the internet.

Process management The kernel distributes the processor’s time between all the dif-
ferent applications currently running. It also has to facilitate a means for processes
to communicate with each other.

Memory management The kernel allocates memory (RAM) to processes as required,
and also ensures that processes cannot read or modify memory that they shouldn’t
be able to. It also has to handle the situation where not enough memory is available
to meet the running programs’ demands!

2

Figure 1: A timeline of Linux distributions. There’s a vast number of them! Image:
https://commons.wikimedia.org/w/index.php?curid=2556373

This is all low-level stuff—very close to the bare metal!
A lot of what gets referred to as Linux is really a set of tools which run on top of

the kernel. Many of these programs were written in the 1980s by the GNU Project,
and so many people prefer to refer to the entire system as ‘GNU/Linux’. Various
organisations distribute Linux together with curated collections of software—resulting
in what’s called a Linux distribution.

For today’s session we’ll be using the School of Computer Science’s media room,
whose (non-Mac) machines are equipped with the Fedora Linux distribution; but there
are many others available. For instance, Maths and Stats uses the Ubuntu distribution
on their desktops and laptops.

If you want to try Linux on your own machine, both of these distributions are good
places to get started. These—along with many others—offer a ‘Live USB’ version, so
you can try before you buy into Linux. It’s also possible to install Linux directly, even
alongside an existing Windows installation. If you choose to do this, I recommend you
find a Linux guru and seek their advice!

Today Linux is hidden in plain sight—it’s on smartphones, satnavs, TVs, wireless
routers, web servers, supercomputers,. . . the list goes on and on. Microsoft has even
announced plans to run a version of Ubuntu on top of Windows 10!

0.1 What’s in it for me?
The main focus of this tutorial is on the advantages the Linux environment has for
technical computing. In particular, the command-line interface provided by bash is
extremely powerful, and lends itself naturally to automating tasks. To many this way of
interacting with a computer seems foreign and unintuitive at first; but there are advan-
tages. For instance, the ssh command allows us to interact with a remote computer via
a terminal. While graphical desktops are sometimes available over a network connection,
they’re often sluggish as every input and response has to be transmitted over a wire.
Some machines—such as topsy, the SAgE high performance computing cluster—don’t
offer this: command-line is the only way.

Another strong point of Linux is its suite of automation tools. Have you ever written
a complicated program which needs frequent testing to make sure you haven’t broken
anything? Shell scripts and make are your friend, allowing you to process as many
instructions as you like in one command. For another example, imagine you need to do
the same repetitive task over and over again to multiple files. Maybe they need to be
renamed to a specific name format; perhaps you need to compile 200 LATEX documents
and send them all to the printer.

The final advantage of Linux that we’ll mention is its reliability. In Maths and Stats
we’ve had staff and students run vast number-crunching simulations that took many
months to complete. Thanks to the Linux server infrastructure these ran successfully

3

https://commons.wikimedia.org/w/index.php?curid=2556373
http://topsy.ncl.ac.uk/

without interruption or any errors. (Though if you’re running a long job, you should
really save data periodically to file so that computations can be resumed if the program
suddenly encounters a problem!)

All of the stuff we’ll describe could be done on Windows and macOS via their own
shells and and tools; in particular macOS shares a lot of the same command-line tools.
Linux isn’t the only way; it’s just a tool (albeit one you don’t have to pay for!) You should
pick the tool you find easiest to use and which allows you to be the most productive.

0.2 About this document
By all means read through at your own pace. When software, e.g. Linux is introduced
it’ll be typeset in small caps. Code snippets are typeset like this, and if I want to
point something out in particular it’ll also be bold. When a term is introduced, or
when I’m explaining an abbreviation I’ll use italics.

Longer code snippets are typeset as their own paragraph;
to set them apart they’re usually indented slightly.
They typically span multiple lines.

Exercise. To test your understanding and gain some hands-on experience, I’ve
included a number of short exercises throughout. They’re not meant to be stressful
or challenging—just a silly hoop-jumping task to try and get commands and infor-
mation to stick in your brain. Feel free to ask if something isn’t clear: we’re not
trying to grill you!

Top tip! Helpful tips are included throughout the document. You don’t need them to understand
everything, but they will make your life a lot easier!

Maths & Stats only: Some information is specific to the School of Maths & Stats. It may
apply to other Linux systems as well, if they’ve chosen to adopt the same conventions as Maths’
computing officer.

1 Using a graphical interface
Let’s start by getting used to the graphical desktop in Linux. For many day-to-day
tasks, you can use a graphical interface just like you’re already used to. The biggest
difference is that the programs you’re familiar with probably won’t be available. Some
software is written for a specific operating system: e.g. Microsoft Office, Apple’s
Pages, Numbers and Keynote. There are Linux replacements for many of these—for
instance Libre Office for the two office suites above. Quite often the replacements are
cross-platform: designed to run on as many operating systems as possible. Libre Office
is such an example, and can be installed free of charge on your own computer. Probably
the best-known examples of cross-platform software are Google’s Chrome/Chromium
and Mozilla Firefox.

Top tip! On both Ubuntu and Fedora, the most recent text selection that you’ve made with
your mouse can be pasted by pressing the middle-mouse button.

Top tip! If you find that your screen suddenly becomes entirely black with white text asking
for a login, you have probably accidentally switched to a ‘tty’. To get back to the normal graphical
interface, press Control-Alt-F1 on Fedora and Control-Alt-F7 on Ubuntu.

There are a multitude of other desktop environments available; we’ll only discuss the
two you’re most likely to encounter in Maths and Stats.

4

1.1 Fedora: GNOME shell
At the time of writing, the Computer Science machines are running Fedora 21. You
should be able to login using your usual Newcastle username and password. Once
successful, an information message about GNOME shell will pop up; you can safely
ignore this. You should be presented with a blank desktop (Figure 2), along with a
’getting started’ setup guide. Again, the setup screen can be safely ignored in today’s
session.

The default desktop in Fedora 21 consists only of a ‘panel’ at the top of the screen.
From left to right, this contains

• a hotspot to access the activities overview;

• a menu for the currently active application;

• the system’s date and time; and

• notification icons: network connectivity, volume control, and the logout menu.

The activities overview is available in the top-left of the screen. The default shortcut
for this is the Windows key (also called the Super or Meta key). It contains

• the Dash (left), which is similar to MacOS’ Dock;

• a search bar (top);

• a summary of the current desktop’s windows (centre); and

• an overview of the virtual desktops (right).

(See Figures 3 and 4.) To access the full list of available applications, press the 3-by-3
grid of dots at the bottom of the dock (Figure 5).

Multiple workspaces, or virtual desktops allow you to group together related windows
without having them take up the same screen space as everything else. Drag-and-drop
windows on the right-hand side of the activities overview to move them between virtual
desktops. The default shortcuts for moving between these are Control-Alt-Up and
Control-Alt-Down.

We’ll quickly mention that Mozilla Firefox and Libre Office are available for
web browsing and office software. For handling plain-text files there’s gedit. Both files
and folders, as well as the holding place for deleted files can be handled in the Files
application.

Top tip! The same shortcuts and mouse gestures used to (half-)maximise windows in Windows 7
also work in Fedora. Press Super-Up or drag a window’s titlebar to the top of the screen to maximise;
press Super-Left/Right or drag a window’s titlebar to the side of the screen to half-maximise.

5

Figure 2: The default desktop in Fedora 21.

Figure 3: GNOME shell’s activities overview.

6

Figure 4: Searching in the activities overview.

Figure 5: The full list of applications.

7

Figure 6: Firefox web browser.

Figure 7: Libre Office’s Writer, Calc and Impress.

8

Figure 8: GNOME’s text editor gedit.

Figure 9: The file browser. On Fedora, note how the application preferences are available
from the top panel.

9

1.2 Ubuntu: GNOME classic desktop

Maths & Stats only: At the time of writing, the Maths & Stats machines are running a
mixture of Ubuntu 14.04 and 16.04. This is the default desktop environment provided on Maths &
Stats Linux desktops.

You should be able to login using your usual Newcastle username and password. You
should be presented with a blank desktop (Figure 10), which consists of two ‘panels’.
All in all, the desktop contains

• a ‘show desktop’ button, which minimises all windows on the current desktop
(bottom left);

• a area to display the windows which open on the current desktop (bottom);

• a widget indicating which virtual desktop is currently being used (bottom right);

• a notification area, including network, volume, and login controls (top right); and

• the applications and places menu, along with some shortcut icons (top left).

Multiple workspaces, or virtual desktops allow you to group together related windows
without having them take up the same screen space as everything else. Drag-and-drop
the boxes corresponding to windows in the bottom-right corner of the screen to move
them between virtual desktops. The default shortcuts for moving between these are
Control-Alt-Left and Control-Alt-Right.

We’ll quickly mention that Mozilla Firefox and Libre Office are available for
web browsing and office software. For handling plain-text files there’s gedit. Both
files and folders, as well as the holding place for deleted files can be handled in the
Files application. This can be opened by selecting a destination from the places menu
(Figure 11).

10

Figure 10: Ubuntu 14.04’s default desktop.

Figure 11: Ubuntu’s places menu.

11

Figure 12: The applications menu, showing how to start the terminal.

Figure 13: Firefox web browser.

12

Figure 14: Libre Office’s Writer, Calc and Impress.

Figure 15: GNOME’s text editor gedit.

13

Figure 16: The file browser.

14

2 Getting used to the terminal

Figure 17: Left: A Teletype Model 33 ASR teleprinter, manufactured from 1965
to 1976. Centre: A DEC VT100, introduced in 1978. Right: A terminal emulator
gnome-terminal. This is what ‘terminal’ typically refers to nowadays.
Image: https://commons.wikimedia.org/wiki/File:ASR-33_at_CHM.agr.jpg
Image: https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg

The word terminal originally referred to a hardware device for entering data into and
displaying output from a computer. The computers of the 70s were big, bulky and expen-
sive, so they were often used as servers, time-shared between multiple users who would
each use their own terminal. As time progressed; computers became quicker, smaller,
and crucially cheaper, so that each user could have their own personal computer—a
terminal and a server all in one.

Strictly speaking, what we call a terminal today is really a terminal emulator. This
is a piece of software which simulates a terminal inside a window on your desktop. The
terminal emulator sends your input to a a program called the shell (typically bash). In
turn, the shell is responsible for running other commands and relaying their output to
the terminal.

Enough history and jargon; let’s launch a terminal. In Fedora, press the Windows
key to open the activities view; type ‘term’ to begin searching and click the terminal
option that appears—see Figure 4. In Ubuntu the terminal is in the applications menu
under Accessories → Terminal—see Figure 12.

Top tip! In Ubuntu you can also use the shortcut Control-Alt-T to launch a new terminal.

You should get something a window containing text that looks like:

b0036119@caldew:˜$

I’ve written up these notes working on my own machine in Maths & Stats, so the terminal
snippets may look a bit different to how they appear in the Computer Science cluster.
The key thing to look out for is the $ prompt, which tells us the terminal is waiting for
its next command to run.

Commands are executed by typing their name followed by a list of arguments. Press
the Return or Enter keys to run the command.

b0036119@caldew:˜$ echo Hello world!
Hello world!

The list of arguments may be empty.

b0036119@caldew:˜$ whoami
b0036119
b0036119@caldew:˜$ date
Mon Jun 27 11:40:02 BST 2016

15

https://commons.wikimedia.org/wiki/File:ASR-33_at_CHM.agr.jpg
https://commons.wikimedia.org/wiki/File:DEC_VT100_terminal.jpg

Arguments are separated or delimited by spaces. If you want to pass an argument which
contains a space you should enclose the argument in “quotes” or escape the space by
typing a backslash before it. There are other special characters like |<>&$ˆ?*˜[]‘#
which need to be escaped with a backslash too.

b0036119@caldew:˜$ echo a b c d e
a b c d e
b0036119@caldew:˜$ echo "a b c d e"
a b c d e
b0036119@caldew:˜$ echo a\ b\ c\ d\ e
a b c d e
b0036119@caldew:˜$ echo a\ b\ \ c\ \ \ d\ \ \ \ e
a b c d e

In the example above, I’m trying to print1 the string "a b c d e" (including spaces).
The echo command prints out its arguments separated by a space, so I have to tell the
shell that these spaces are part of an argument, rather than an argument delimiter.

Exercise. For this minicourse I’ve prepared a collection of small demo files to give
you something to work with. These are available online from https://goo.gl/
k7JiwX. Download them to your home folder (see below) by running the command:

curl -L https://goo.gl/k7JiwX | tar -x

The | character is a ‘pipe’, available on a UK keyboard on the same key that
contains backslash. When successful, you should have a demo folder inside your
current directory.

For the moment just take this command on faith. By the end of this course you
should hopefully understand (how to find out) what this string of gibberish means!

2.1 Navigation
One big difference between Linux and Windows is hierarchy the use to store files.
(macOS is quite similar to Linux here.) Rather than have multiple drives containing
folders and files, there is one root directory denoted by /. We can inspect the contents
of / at any time by using the ls command.

b0036119@caldew:˜$ ls /
backup etc lost+found proc space var
bin home media root srv vmlinuz
boot initrd.img mnt run sys websites
data lib net sbin tmp WinData
dev lib64 opt scratch usr

ls stands for list: it shows the files and folders contained within the path you supply to
it—in this case, /. It’s an extremely useful command and we’ll be seeing lots of it! In
particular, notice the home directory in the output—this is where each user’s personal
files, folders and settings are kept. The equivalent on recent versions of Windows is
C:\Users, on older Windows versions it’s C:\Documents and Settings, and on Mac
it’s /Users.

1In computing, print means to output to the screen. Before computers actually had screens, the
only way to output something human-readable was to physically print it on paper; hence the name.

16

https://goo.gl/k7JiwX
https://goo.gl/k7JiwX

Your own home area is typically a subfolder with the same name as your username
within /home. For instance, mine is /home/b0036119:

b0036119@caldew:˜$ pwd
/home/b0036119

Here I’ve used the pwd command to print out the current working directory. When
you start a new terminal, the working directory is always your home folder. Within
this directory you can read, create and edit files and folders as you please. No one else
(barring system administrators) has these access privileges to your home area. There’s
also /tmp, a place to store temporary files which are not required to remain after the
computer is rebooted.

Maths & Stats only: Home areas are actually kept on a network drive, so there is some
overhead when reading and writing files. There’s also the /data folder which can be used to keep
files on your physical PC without accessing the network.

If I don’t tell ls to list a specific folder, it defaults to printing the working directory.

b0036119@caldew:˜$ ls
archive Desktop Metro_Map.pdf robertson temp.py˜
Audio Downloads parallel scripts test.txt
barker Dropbox Pictures teaching thompsons_v
bin log R temp.pdf website

I could ask to see what’s inside a specific directory—for instance, the robertson direc-
tory. However this does not change the current directory.

b0036119@caldew:˜$ ls robertson
Experiments Periodic 2-simultaneous conjugacy
FP Centralisers Pond example
HNC Posters
LaTeX Presentations
Misc notebooks Progression
Papers Reading
Paperwork archive
b0036119@caldew:˜$ pwd
/home/b0036119

This is an example of using a relative path. Paths starting with a / are absolute—they
always start from the root directory / and work their way down through subfolders.
Paths like robertson which don’t start with a / are interpreted as if they were glued
onto the end of the path to the working directory. In this example, robertson got
interpreted as /home/b0036119/robertson.

If we want to work within a particular folder, we can make our lives easier by changing
the current directory. For instance, I could have done the above by first moving into
robertson and then running ls.

b0036119@caldew:˜$ cd robertson
b0036119@caldew:˜/robertson$ ls
Experiments Periodic 2-simultaneous conjugacy
FP Centralisers Pond example
HNC Posters
LaTeX Presentations
Misc notebooks Progression
Papers Reading

17

Paperwork archive
b0036119@caldew:˜/robertson$ pwd
/home/b0036119/robertson

Note that my prompt—the bit before the $—changes to remind me which directory I’m
currently working in. Your system may or may not have this; don’t worry if it doesn’t
look exactly the same.

What about if you want to go back up a level? Use the .. notation, which stands
for ‘the previous level’. The exception is when you’re in the root directory /. Here ..
refers to the root again, simply because there is no previous level! In my example, I can
see the contents of my home directory by running ls .. in my terminal.

b0036119@caldew:˜/robertson$ ls ..
archive Desktop Metro_Map.pdf robertson temp.py˜
Audio Downloads parallel scripts test.txt
barker Dropbox Pictures teaching thompsons_v
bin log R temp.pdf website
b0036119@caldew:˜/robertson$ pwd
/home/b0036119/robertson

If I want to refer to something inside the parent directory, I need to add a forwardslash
to the double dots.

b0036119@caldew:˜/robertson$ ls ../website
css fonts index.html js TODO
downloads images index.html˜ README.md

Without the extra slash, I’d be asking for a file or folder in the present directory
(robertson) called ..website. If I want to refer to two levels above, I need to use
../.. (two double-dots glued together with a slash). Three levels would be ../../..
and so on.

b0036119@caldew:˜/robertson$ ls ../..
b0036119
b0036119@caldew:˜/robertson$ ls ../../..
backup etc lost+found proc space var
bin home media root srv vmlinuz
boot initrd.img mnt run sys websites
data lib net sbin tmp WinData
dev lib64 opt scratch usr

The first directory listing above is /home; the second is the root /.
Similarly I can use a single full stop . to refer to the current directory.

b0036119@caldew:˜/teaching/linux$ ls
build demo demo.tar.gz images intro_to_linux.tex
publish.sh publish.sh˜ tex
b0036119@caldew:˜/teaching/linux$ ls .
build demo demo.tar.gz images intro_to_linux.tex
publish.sh publish.sh˜ tex
b0036119@caldew:˜/teaching/linux$ ls build
intro_to_linux.aux intro_to_linux.out intro_to_linux.synctex.gz
intro_to_linux.log intro_to_linux.pdf intro_to_linux.toc
b0036119@caldew:˜/teaching/linux$ ls ./build
intro_to_linux.aux intro_to_linux.out intro_to_linux.synctex.gz
intro_to_linux.log intro_to_linux.pdf intro_to_linux.toc

18

These shortcuts . and .. might seem a little odd at first, but they do come in handy.
For instance, some commands will accept a directory as their argument, for instance cp
(see Section 2.3). Also, when executing your own programs, you need to explicitly refer
to the current directory (Section 2.3.5).

Let’s move back to our home directory. Because you want to refer to your home area
very often, the terminal (strictly speaking, the shell) expands the tilde character ˜ to
the absolute path of your home directory. (On a UK keyboard this is typically above
the hash key, which itself is above the right shift key.) So we can go home with just four
characters:

b0036119@caldew:˜/robertson$ cd ˜
b0036119@caldew:˜$ pwd
/home/b0036119

Top tip! Typing out long file and folder names is tedious, especially when you make a mistake.
To quicken things up, we can use tab completion. For instance, inside my home directory I can type
ls rob and press the Tab key; the shell will autocomplete to ls robertson because there’s no other
file or folder beginning with rob. On the other hand, if I type ls b and then press Tab, the shell
doesn’t know what to do. Do I mean ls barker or ls bin? As there’s no obvious answer, the shell
does nothing. You can ask (the default) shell to show you all the options by pressing Tab twice.

b0036119@caldew:˜$ ls b
barker/ bin/

Inside the home area are lots of hidden folders and files; they’re typically used to
store your application’s preferences and data caches. Any file name or directory starting
with a . isn’t shown by default. We can override this by passing an extra argument to
ls—the -a flag.

b0036119@caldew:˜$ ls -a
. .julia_history
.. .jupyter
.adobe .lesshst
.alias .local
archive log
.atom .macromedia
[listing truncated]

The ‘a’ in -a stands for ‘all’: it shows you everything—even the . and .. which refers
to the current and parent directory.

Exercise. Within the demo folder, navigate to the easter egg hunt subfolder.
Somewhere inside is a file called secret.txt—can you find it? The file and folder
names along the way should give you some help, but be warned: some of them
are decoys! If you succeed, you can print the secret file to screen by running cat
secret.txt.

2.2 General command-line advice
Probably the single most useful thing you can do is grab yourself a cheat sheet. I’d
recommend the one available from FOSSwire,2 which has been included at the end of
these notes.

2 https://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

19

https://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

2.2.1 Getting help

There are three main ways to get help if you don’t know how to use a command:

1. See if you can print a help message with -h or --help;

2. Read the man page for the command; or

3. Consult an expert, boffin or guru; even better try asking the internet.

Let’s go through the first two.
The vast majority of commands have some sort of help option, typically accessed by

running the command and passing the --help option (sometimes -h). Let’s use our old
friend ls.

b0036119@caldew:˜$ ls --help
Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory for short options too.
-a, --all do not ignore entries starting with .
-A, --almost-all do not list implied . and ..

--author with -l, print the author of each file
-b, --escape print C-style escapes for non-graphic characters

[..output truncated]

At the top is the usage pattern:

Usage: ls [OPTION]... [FILE]...

All of the stuff listed that starts with a dash is considered an option, like -a from before.
The pattern specifics that these options come after the command name but before the
file or folder name. The ellipses ... indicate that more than one option and more than
one file/folder can be given. The square brackets enclose optional arguments: if we like
we can leave them out—that’s why ls by itself is a perfectly valid command.

Next comes a complete list of all the options specified. Some of them have a short
form (one dash and one letter); some have an explicit long form (two dashes); and
some commands even have both! These are case-sensitive: note that -a does something
different to -A. Somewhere in that list of options should be --help, which we’ve just
used to print the help message!

Exercise. Have a look through the options for ls for anything interesting or
potentially useful; give them a try! I’d suggest -S, -l and -t. What does the -h
flag do? (It doesn’t print help in this case!)

Exercise. The Firefox browser is available in a terminal via the firefox com-
mand. Check the help message to work out how to open a new tab pointing to
http://example.com. Can you open two tabs at the same time? Three windows?
A mix of tabs, windows and private browsing windows?

Onto the second option: consult the manual. Try running man ls—you should end
up with something like this.

LS(1) User Commands LS(1)

20

http://example.com

NAME
ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current
directory by default). Sort entries alphabetically
if none of -cftuvSUX nor --sort is specified.

Mandatory arguments to long options are mandatory
for short options too.

Manual page ls(1) line 1/272 5% (press h for help or q to quit)

man searches your machine for relevant documentation and displays it to you in a scrol-
lable window.3 You can scroll the page using the arrow keys, mouse wheel, or Page
Up/Down keys. In this case the manual page is virtually identical to the help page.
However if you scroll to the bottom you’ll notice that there’s some extra information
that wasn’t present before: ‘Author’, ‘Reporting bugs’, ‘Copyright’ and ‘See also’.

Top tip! Even man has its own documentation. Try man --help or man man if you’re feeling
brave.

Man doesn’t print out text to your terminal—instead, it ‘takes over’ the entire ter-
minal temporarily. At the bottom is the helpful instruction ‘press q to quit’, which
leads us onto the next section.

2.2.2 Quitting a command and exiting the terminal.

There are plenty of commands that ’take over’ your terminal; this section is here just
as a reminder that you can often quit by pressing the Q key. If that happens, most
programs accept an ‘interruption signal’, or SIGINT for short. This tells the program to
stop running immediately. You can send this by pressing Control-C in a terminal—note
that this does not copy the current selection to the clipboard!

Applications get the chance to ‘respond’ to this signal, so they can clean up any
resources they’re using and exit gracefully. If this goes wrong then Control-C might
not stop the program; in this case you could quit the terminal, or refer to section 5 for
what to do next.

Exercise. If you want to test this out, try running the ping command:

b0036119@caldew:˜$ ping bbc.co.uk
PING bbc.co.uk (212.58.246.79) 56(84) bytes of data.
64 bytes from 212.58.246.79: icmp_seq=1 ttl=51 time=9.09 ms
64 bytes from 212.58.246.79: icmp_seq=2 ttl=51 time=9.19 ms
64 bytes from 212.58.246.79: icmp_seq=3 ttl=51 time=9.15 ms
64 bytes from 212.58.246.79: icmp_seq=4 ttl=51 time=9.11 ms
[output continues...]

3This will typically be passed displayed through the program less, which we’ll in Section 2.3.2.

21

Figure 18: Terminals will typically ask you to confirm closing them if they are running
a process.

Without any other arguments, this command runs indefinitely, testing that the
given internet address can be reached over the network. Once you’re satisfied that
your network connection to the BBC (or any website of your choice) is working, you
can quit with Control-C.

So how do we quit the terminal? If your terminal is graphical, you can close it by
closing the window it’s contained in. This will kill any processes currently running,
though you may be asked for confirmation. (See Figure 18).

Top tip! Some terminals can run multiple shells each in their own tab, which can be handy if
you need to alternate between working in one directory and another. Check the terminal’s menus
to see how to enable this. In this case closing the window will close the shells running in all tabs,
and any processes the shells are running. Closing one tab will only close the corresponding shell.

If you’re not using a graphical shell, for instance if you are logged into another
machine via ssh, you can quit the current shell by using the exit command. Beware
that if this is a ‘login shell’ (as is the case with ssh) you will be logged out from your
current session!

2.3 File handling
2.3.1 Creation

To make a new file in the current directory, use the touch command. If the files you
give it don’t exist, they’re empty files with the given names are created. That’s why
the cat below (concatenate—among other things, it prints the given file to the screen)
doesn’t appear to do anything.

b0036119@caldew:˜$ touch example.file
b0036119@caldew:˜$ cat example.file
b0036119@caldew:˜$ ls -l example.file
-rw-r--r--+ 1 b0036119 nma 0 Jun 22 21:01 example.file

Let me wait a minute before I type some more commands. (I checked the file’s modi-
fication time with ls -l.) Note that touch will not overwrite an existing file. In this
case, its purpose is to update the file’s (files’) access and modification time to the cur-
rent time. It doesn’t actually edit the file; it only very gently touches it to update its
metadata.

22

b0036119@caldew:˜$ date
Wed Jun 22 21:02:11 BST 2016
b0036119@caldew:˜$ touch example.file
b0036119@caldew:˜$ ls -l example.file
-rw-r--r--+ 1 b0036119 nma 0 Jun 22 21:02 example.file

The analogous command for directories is mkdir (make directory), which creates new
empty directories. If the directory already exists, you’ll get an error message.

b0036119@caldew:˜$ ls
archive Downloads parallel teaching website
Audio Dropbox Pictures temp.pdf
barker example.file R temp.py˜
bin log robertson test.txt
Desktop Metro_Map.pdf scripts thompsons_v
b0036119@caldew:˜$ mkdir example_dir
b0036119@caldew:˜$ ls
archive Downloads Metro_Map.pdf scripts thompsons_v
Audio Dropbox parallel teaching website
barker example_dir Pictures temp.pdf
bin example.file R temp.py˜
Desktop log robertson test.txt
b0036119@caldew:˜$ ls example_dir
b0036119@caldew:˜$ mkdir website
mkdir: cannot create directory ’website’: File exists

Exercise. (This one isn’t particularly important but you might find it interesting.)
Make a new file using touch; then use touch to change its access/modify date to
your birthday (consult the help files to work out how.) What’s the earliest date
you can set using touch? What’s the latest date? Why is the answer to the last
question worrying?

Top tip! Before I forget, here’s some advice about how to name your files.
• By default, tab completion is case-sensitive. For example, ro would expand to robertson

but not Robertson. Some people get around this by advocating that you only use lowercase
filenames. With that said, tab completion can be made case-INsensitive. If you don’t mind
getting your hands dirty, see e.g. http://superuser.com/a/435127/550042.

• Spaces are also a bit of a pain on the command line. If I type rm my file, the shell would
interpret that as passing two arguments to rm: the first being the string "my" and the second
being "file". I’d have to either quote the argument (rm "my file" or escape the space with
a backslash (rm my\file). People advocate getting around this by using underscores instead.

• The same goes for other characters like &, >, < and | which have special meanings in a shell.
Escape them with a backslash; quote them; or else avoid them in file and folder names!

2.3.2 Reading and writing files

Let’s start with writing. We’re going to make life easy for ourselves by using a graphical
editor called gedit, so-called because it’s the GNOME Desktop’s text editor. This can
be launched from the applications menu, or in the terminal by typing

b0036119@caldew:˜$ gedit &
[1] 20637

The reason there’s an ampersand (&) here is that we need to run gedit in the back-
ground. Without the ampersand otherwise it will take over our terminal until we quit
with Control-C. The number that’s displayed is a ‘process ID’: see Section 5 for more
details.

23

http://superuser.com/a/435127/550042

Figure 19: I used gedit to write most of the demo files. In the setup I’m using (Ubuntu’s
Unity desktop) the menus are kept on the top of the screen, similar to a Mac.

Gedit works just like Notepad on Windows and TextEdit on Mac: it handles
reading, editing and writing of plain text files. Let me briefly a few tips:

• Unlike Notepad, gedit can edit multiple files by placing each in their own tab.
This is helpful when you need to edit two or more related files in the same project,
for instance.

• The user settings4 can be configured by selecting Edit → Preferences. If you’re
planning to do any programming I’d recommend you use the display line numbers
and the highlighting options.

• One very useful feature is ‘syntax highlighting’. gedit will try to turn this on
automatically by examining the extension of the file you’re editing. If it guesses
wrong, you can override this by selecting View → Highlight mode.

• If you’re editing example.file in gedit, an backup file example.file˜ with a
tilde ˜ appended will be automatically created. These are perfectly normal and
nothing to worry about! If you don’t want them cluttering your filespace, you can
disable them in the options—see Figure 19.

Exercise. Create a new text file in your home area which contains your favourite
joke. Don’t forget to save it!

There’s nothing stopping you from using gedit to read files, but let me mention a
few terminal-based utilities to do so. The big one is less, which displays as much of a
file as it can in the terminal and lets you scroll with the arrow, Page Up and Page Down
keys. (The name is a quirk of history: it’s an improvement of a previous program called
more, which did the same thing but only allowed you to scroll forward.)

b0036119@caldew:˜/teaching/linux$ less intro_to_linux.tex
\documentclass[a4paper, draft]{article}
\usepackage[margin=1.5in]{geometry}
\usepackage{amsmath}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{xcolor}
\usepackage{placeins}
\usepackage{framed}
\usepackage{lmodern}
\usepackage{pdfpages}

4On Windows the conventional menu location for this is Tools → Options; on a Mac the settings
are contained in the menu whose label is the application’s name.

24

\title{Introduction to Linux}
\author{David Robertson}
\setcounter{section}{-1}
intro_to_linux.tex lines 1-14/1394 0%

Press Q to quit less when you’re finished reading the file.
less has too many features and options to go into now, but let me briefly mention

how to search. Activate the search mode by pressing forwardslash /. Type the string
you’re searching for and press enter. To find the next instance of your search term, press
N; to find the previous insteance press Shift-N.

It’s also worth mentioning head and tail, which show the first (respectively last)
few lines of a file.

b0036119@caldew:˜/demo/poems$ head chocolate_cake.poem
Chocolate Cake

I love chocolate cake.
And when I was a boy
I loved it even more.

Sometimes we used to have it for tea
and Mum used to say,
’If there’s any left over
you can have it to take to school
b0036119@caldew:˜/demo/poems$ tail chocolate_cake.poem
not before you’ve washed your dirty sticky face.’
I went upstairs
looked in the mirror
and there it was,
just below my mouth,
a chocolate smudge.
The give-away.
Maybe she’ll forget about it by next week.

-- Michael Rosen

Exercise. Have a look at the poems folder inside the collection of demo files.
Use less to read through them at your leisure. You should now feel mentally
reinvigorated and culturally energised. Apply this energy to your next challenge:
can you work out a way to get tail to show the authors of all three poems using
one command?

2.3.3 Only for the brave: nano, vim and emacs

Feel free to skip this section. It describes terminal-based text editors and is not for the
faint of heart. Learning to use them is more of a learning cliff than a learning curve;
they have many powerful features and are highly configurable. Indeed some people
prefer to use them over a graphical editor—once you’ve learned all the tips and tricks
you can manipulate files very efficiently.

I’m including this section mainly as reference material. Even if you don’t like their interface, these
editors can be useful if you want to edit files on a command-line only remote computer, e.g. via ssh.
(They can also be the default editor used by programs like git commit.) Unfortunately I’m only aware
of how to use vim; you’ll have to defer to the internet for nano or emacs advice. So with that said,
here’s an extreme crash course in vim.

• Open a file for editing by typing vim <filename>.
• Initially you’re in normal mode, which is used to navigate the file and edit its contents. You can

use the arrow keys to move the cursor around the file.
• Press I once to enter insert mode. This mode is very similar to a normal text editor: typing

inserts characters into the file; delete and backspace work as normal.

25

• Once you’re done with insert mode, press Escape to return to normal mode.
• In normal mode, type a colon : followed by a w, then enter to save the file. (The w stands for

write.)
• To quit vim and return to the terminal, type :q. If you have any unsaved changes, vim will ask

you to confirm that you want to quit by typing :q!.

If this hasn’t put you off and you’d like to learn more, I’d recommend finding yourself a good
tutorial or cheat sheet5.

2.3.4 Moving, copying and deleting

warning! All of these commands will overwrite or delete the target file, so think
before you type.

The commands you want are mv for moving, cp for copying, and rm for removing. The
first two move/copy their first ‘source’ argument to their second ‘destination’ argument.
As in the warning, if the destination file already exists, moving or copying something
onto it will overwrite the destination file.

Let’s see this with an example. I’ve made two text files in a folder called example.
First a copy operation:

b0036119@caldew:˜/example$ ls
file1.txt file2.txt
b0036119@caldew:˜/example$ cat file1.txt
file 1
b0036119@caldew:˜/example$ cat file2.txt
file 2
b0036119@caldew:˜/example$ cp file1.txt file3.txt
b0036119@caldew:˜/example$ cat file3.txt
file 1

Now we’ll do another copy operation which overwrites file3.txt.

b0036119@caldew:˜/example$ ls
file1.txt file2.txt file3.txt
b0036119@caldew:˜/example$ cp file2.txt file3.txt
b0036119@caldew:˜/example$ cat file3.txt
file 2

Now we’ll do a move operation (or ‘rename’ if you prefer) which also happens to overwrite
the destination file.

b0036119@caldew:˜/example$ mv file2.txt file3.txt
b0036119@caldew:˜/example$ ls
file1.txt file3.txt
b0036119@caldew:˜/example$ cat file3.txt
file 2

Finally let’s delete everything to tidy up after ourselves. The rm command deletes
all its arguments. We can see this because the second ls command outputs nothing
below.

b0036119@caldew:˜/example$ ls
file2.txt file3.txt
b0036119@caldew:˜/example$ rm file2.txt file3.txt
b0036119@caldew:˜/example$ ls

5Try http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

26

http://www.viemu.com/a_vi_vim_graphical_cheat_sheet_tutorial.html

Alternatively we could have tried to remove the entire directory, but this would
have given us an error. To delete a directory, we need to pass the -r (for recursive)
option. Note that this will ruthlessly delete anything in the target directory and all of
its subdirectories—it’s a big red nuclear button of death!

b0036119@caldew:˜/example$ rm ..
rm: cannot remove ’..’: Is a directory
b0036119@caldew:˜/example$ rm -r .
rm: cannot remove directory: ’.’

I can’t remove the current directory by referring to it as ., because afterwards the
working directory would be a directory that no longer exists! Instead, I need to move
up a level and delete the demo folder explicitly.

b0036119@caldew:˜/example$ cd ..
b0036119@caldew:˜$ rm -r example
b0036119@caldew:˜$ ls
archive Desktop Metro_Map.pdf robertson temp.py˜
Audio Downloads parallel scripts test.txt
barker Dropbox Pictures teaching thompsons_v
bin log R temp.pdf website

No example folder in sight!

Exercise. Open the jokes folder inside the demo files. At the time of writing it
contains 15 jokes of varying quality—some of them are awful puns from the internet,
whereas others are award-winning jokes from the Edinburgh Festival.

Make three new folders called good, okay and poor. Delete the worst three jokes,
and categorise the remaining 10 jokes by moving them into the folders you’ve just
created. Copy the joke you created two exercises ago into the appropriate folder.
Delete the poor folder, and rename okay to ‘barely acceptable’.

Top tip! The scp (secure copy) command can be used to copy files or folders to another computer
via ssh.

2.3.5 Running your own programs

This section is mostly here for reference purposes in the future.
In the programs folder there’s a toy program called hello world.py. Let’s run it

to see what it does.

b0036119@caldew:˜/demo/programs$ ls
hello_world.py potatoes.py run_forever.py
b0036119@caldew:˜/demo/programs$ hello_world.py
hello_world.py: command not found

That’s odd–we’ve run every command before by just typing its name and pressing enter.
What’s different?

The list of paths that the shell searches on for programs is kept in an environment
variable called PATH. (This is also true on Mac and Windows.) We’ll learn more about
environment variables later; for now I’ll just show you how to print it out.

b0036119@caldew:˜/demo/programs$ echo $PATH
/data/bin:
/home/b0036119/bin:

27

/usr/local/vapor/x86_64/bin:
/usr/local/maple15/x86_64/bin:
/usr/local/bin:
/usr/sbin:
/usr/bin:
/sbin:
/bin:
/usr/local/auto/07p/cmds:
/usr/local/auto/07p/bin

Because the Python program we just tried to run isn’t in one of these directories, it the
shell didn’t run it when we asked it to. (In a terminal these paths won’t be shown on
new lines; I’ve added them for clarity.) The reason for this is to stop someone leaving a
malicious program called ls or pwd which secretly deletes your home directory whenever
you run it. You want to be confident that ls always refers to the system program ls!

To get around this problem, tell the shell ‘I’m sure I want to execute this thing in
the current directory’ by adding a ./ to the front of the file name.6

Let’s try the example again.

b0036119@caldew:˜/demo/programs$./hello_world.py
bash: ./hello_world.py: Permission denied

Hmm, this still isn’t working. The problem is that this file isn’t marked as ‘safe to
execute’. Part of a file’s metadata includes whether or not it can be executed. This
stops you from asking the computer to interpret a random file as an executable program,
which could go badly! We can get around this by marking the file as executable with
chmod.

b0036119@caldew:˜/demo/programs$ ls -l hello_world.py
-rw-r--r--+ 1 b0036119 nma 129 Jun 22 17:27 hello_world.py
b0036119@caldew:˜/demo/programs$ chmod +x hello_world.py
b0036119@caldew:˜/demo/programs$ ls -l hello_world.py
-rwxr-xr-x+ 1 b0036119 nma 129 Jun 22 17:27 hello_world.py
b0036119@caldew:˜/demo/programs$./hello_world.py
Hello, world!

(Note how an x for execute appeared in the output of ls -l.) If I want to execute a
program in another directory that works fine. The key thing is that I have to give a
specific path to the program I want to execute, not just its name by itself.

b0036119@caldew:˜/demo/programs$ cd ..
b0036119@caldew:˜/demo$ programs/hello_world.py
Hello, world!

chmod is used more generally to alter file and folder permissions. This metadata is
present on every file and folder; it controls who can read, write and execute a given file.
Have a look at the man or --help pages for chmod if you’re curious.

If you have to run a long numerical simulation, it can be useful to measure how long
your program takes to complete. Enter the time command! To use it, pass the name
of a program and any arguments you want to send to it. For instance I could see how
long it takes to echo back a short message.

b0036119@caldew:˜$ time echo "How long will this take to print?"
How long will this take to print?

6Windows differs here—files in the current working directory are considered for execution without
the ./ notation.

28

real 0m0.000s
user 0m0.000s
sys 0m0.000s

The answer is ‘not very long’. A slightly more instructive example is curl, which can
be used to retrieve files from the internet.

b0036119@caldew:˜$ time curl example.com
<!doctype html>
<html>
<head>

<title>Example Domain</title>
[... output trimmed ...]

</html>

real 0m0.178s
user 0m0.006s
sys 0m0.009s

time reports three durations.

real This is ’clock time’, the number of seconds between starting your program and
receiving its final output.

user This is the amount of time the computer is executing your code, including any
libraries of packages you’re using. It doesn’t include time when your program is
waiting, e.g. for a file to be read from disk or for a file to download.

sys The system time measures how much time the kernel spent facilitating your process,
e.g. assigning memory, writing files to disk.

We always have user+sys < real. This is because the kernel is constantly multitasking:
for instance, it has to run all the other programs on your machine, and wait for files or
network connections to become available.

Exercise. The program nth fibonacci.py accepts two arguments n and display.
It computes the nth Fibonacci number, defined by the recurrence fm+2 = fm+1+fm

with initial conditions f0 = f1 = 1. If display is the string “print”, the program
prints fn; otherwise it displays nothing.

b0036119@caldew:˜/demo/programs$./nth_fibonacci.py 10
b0036119@caldew:˜/demo/programs$./nth_fibonacci.py 10 print
55

Use the program to compute the first, tenth, hundredth and thousandth Fibonacci
number. Then use time to measure how long it takes to do this. Can you describe
the relationship between the real runtime and n—e.g. is it linear, logarithmic,
quadratic, exponential in n? Can you explain why?

Disclaimer: this program was just something I quickly cobbled together—it’s by no means
optimised or efficient.

2.4 The filesystem
This section is mostly for reference; it’s not particularly relevant or exciting.

29

2.4.1 Links

Have you ever created a shortcut on Windows to an important file or folder? It points
to another piece of data on your system, but can be kept in a separate place. This is
implemented as a special .lnk file which Windows’ Explorer knows how to interpret.
If you’re not Explorer, however, all you you can see is this .lnk file, which looks just
like an ordinary text file!

Shortcuts are built on top of the filesystem; but ‘links’ are a bit more transparent. If
you try read from a file via shortcut, you’ll see the data within the .lnk file describing
the target. By contrast, if you try to open a link in your program you’ll see the data
within the target file. The links we’ll discuss are called symbolic links, which we can
create by calling ln -s <target> <link location>. The -s stands for symbolic.

b0036119@caldew:/tmp$ mkdir stuff
b0036119@caldew:/tmp$ echo "Example file contents" > stuff/example.txt
b0036119@caldew:/tmp$ ls
hsperfdata_condor stuff
b0036119@caldew:/tmp$ ln -s stuff/example.txt my_great_link.ext
b0036119@caldew:/tmp$ ls
hsperfdata_condor my_great_link.ext stuff
b0036119@caldew:/tmp$ cat my_great_link.ext
Example file contents

(the > is a quick way to add output to a file; see Section 3.2.3.) If I delete the original
file, the link becomes broken.

b0036119@caldew:/tmp$ rm stuff/example.txt
b0036119@caldew:/tmp$ cat my_great_link.ext
cat: my_great_link.ext: No such file or directory

If you want to see if a file or folder is really a link, you can use ln -l:
b0036119@caldew:˜$ ls -l
total 795
drwxr-xr-x+ 10 b0036119 nma 12 Apr 25 11:33 archive
drwxr-xr-x+ 2 b0036119 nma 3 Dec 17 2015 Audio
lrwxrwxrwx 1 b0036119 nma 12 Nov 27 2015 barker -> /data/barker
lrwxrwxrwx 1 b0036119 nma 10 Oct 19 2015 bin -> .local/bin
lrwxrwxrwx 1 b0036119 nma 5 Jun 28 16:00 data_drive -> /data
lrwxrwxrwx 1 b0036119 nma 20 Jun 23 17:14 demo -> teaching/linux/demo/
[output truncated]

There’s also the readlink command:

b0036119@caldew:˜$ readlink data_drive
/data

Notice how you’re not allowed to make a cycle using links.

b0036119@caldew:/tmp$ touch a
b0036119@caldew:/tmp$ ln -s a b
b0036119@caldew:/tmp$ ln -s b c
b0036119@caldew:/tmp$ ln -s c d
b0036119@caldew:/tmp$ ln -s d a
ln: failed to create hard link ’a’: File exists

In general, the linkeaster location must not already exist, or else an error will be
thrown.

30

Exercise. Make a link in easter egg hunt to the secret.txt file from a previous
exercise. Try making a link from a directory to its parent directory. You should
then be able to make an infinite path which goes round in circles! Use this to create
a daft path such as

˜/around/the/world/around/the/world/around/the/world/around/

which could potentially repeat forever. Why does the existence of this trick make
it harder to search through a file system?

Maths & Stats only: In Maths and Stats, many users often make a symbolic link to
important data drive areas in their home area, such as an SVN repository.

Links can be made on Mac and Windows (Vista or later) machines too. ln works the
same on Mac, but Windows users have to use the mklink command with administrator
privileges. The Wikipedia page7 gives a thorough overview.

2.4.2 Disk usage

The du (disk usage) command prints out the folders inside a directory and shows how
much space they’re occupying on disk, including any hidden files they contain. It can
take a while to process everything, particularly if you have a lot of small files in the
given directory. The command df (disk free) is complementary; it shows how much free
space is available on each filesystem available to your system.

b0036119@caldew:˜/demo$ \du
3 ./easter_egg_hunt/down_down
[... output trimmed ..]
17 ./jokes
8 ./programs
8 ./poems
62 .
b0036119@caldew:˜/demo$ \df
Filesystem 1K-blocks Used Available Use% Mounted on
udev 4026468 12 4026456 1% /dev
tmpfs 807464 1212 806252 1% /run
/dev/sda5 19092180 8070016 10029296 45% /
[... output trimmed ..]
/dev/sda9 336301224 16948396 302246652 6% /data
mas-home-pg:/tank/home/b0036119 2097152 1330176 766976 64% /home/b0036119

We’ll quickly mention the -h flag, which shows turns the numbers above into human-
readable numbers with units attached. For instance, part of df -h’s output is

mas-home-pg:/tank/home/b0036119 2.0G 1.3G 749M 64% /home/b0036119

which I think you’ll agree is easier to read.

3 More advanced terminal trickery
Now that we’ve got the basics, this section introduces commands and notation to make
us more efficient when using a terminal.

7https://en.wikipedia.org/wiki/Symbolic_link

31

https://www.youtube.com/watch?v=yca6UsllwYs
https://en.wikipedia.org/wiki/Symbolic_link

3.1 Searching and replacing
3.1.1 Searching for files and folders

With no argument, the find command prints out a list of the files and folders contained
in and below the current working directory. This includes hidden files and folders as
well.

b0036119@caldew:˜/teaching/linux$ find
.
./.git
./.git/refs
./.git/refs/heads
./.git/refs/heads/master
./.git/refs/tags
./.git/hooks
[...output truncated]

In general, find searches in a directory for a files matching a certain series of tests.
For instance, if I only wanted to find .pdf files I’d use the -name test.

b0036119@caldew:˜/teaching/linux$ find -name *.pdf
./build/intro_to_linux.pdf
./images/fwunixref.pdf

Strictly speaking I should be using -iname here, which is a case-insensitive name test.
The asterisk * is part of a glob pattern and stands for ‘anything’. Thus we can read
*.pdf as ‘anything followed by .pdf’. See section 4.2.5 for more on glob patterns.

Another useful test is -type f for finding files only, or type d for directories only.
In the example below I’ve combined these with the -maxdepth 1 test to stop find from
inspecting the entire contents of my Dropbox.

b0036119@caldew:˜/Dropbox$ find -maxdepth 1 -type d
.
./Project Euler
./Keys and certificates
./Screenshots
./Maths
./Public
./Python
./.dropbox.cache
./GoodNotes
./CV
./Outlook
./Camera Uploads
./LaTeX
b0036119@caldew:˜/Dropbox$ find -maxdepth 1 -type f
./Subtle is the Lord - Einstein Biography.pdf
./.dropbox
./Dynamic Storage Allocation.pdf

For each successful match an action is made. If no action is specified, the default
is -print, which prints each file found to stdout. Other actions that might be handy
include -ls, which prints the same style output as ls -l.

b0036119@caldew:˜/teaching/linux$ find -name *.pdf
./build/intro_to_linux.pdf
./images/fwunixref.pdf

There’s also the -delete action, but just like rm this is an action to be used with extreme
caution!

32

b0036119@caldew:/tmp$ touch 1.good 2.bad 3.bad 4.good 5.bad 6.good
b0036119@caldew:/tmp$ touch 7.bad 8.good 9.good 10.good 11.bad
b0036119@caldew:/tmp$ ls
10.good 11.bad 1.good 2.bad 3.bad 4.good 5.bad 6.good 7.bad 8.good 9.good
b0036119@caldew:/tmp$ find -name "*.bad"
./11.bad
./5.bad
./7.bad
./2.bad
./3.bad
b0036119@caldew:/tmp$ find -name "*.bad" -delete
b0036119@caldew:/tmp$ ls
10.good 1.good 4.good 6.good 8.good 9.good

find does much more than these examples show. In fact it does far too much to cover
here, so I’ll defer to find --help and man find if you want to find out more.

Exercise. Use find to cheat at the previous exercise; find the location secret.txt
inside the demo folder. Starting from the root /, which directories do you have
permission to write to?

3.1.2 Searching within files

grep stands for global regular expression print. Its job is to look through a stream of text
and look for a run of text which matches a given pattern. These patterns are the ‘regular
expressions’ we mentioned. They can be more complicated than the ‘glob patterns’ we
used earlier; but we’ll start by keeping things simple. The simplest version is grep
<pattern> <file>, which tests each line of FILE to see if it matches PATTERN; if so,
the line is printed and the match is highlighted.

b0036119@caldew:˜/thompsons_v$ ls
docs notebooks README.md requirements.txt scripts thompson
b0036119@caldew:˜/thompsons_v$ grep group README.md
[Nathan Barker](https://www.dpmms.cam.ac.uk/˜nb443/), [Andrew Duncan]
(http://www.mas.ncl.ac.uk/˜najd2/) and [David Robertson]
(https://DMRobertson.github.io) are currently preparing a paper entitled
The power conjugacy problem in Higman-Thompson groups
which describes an algorithm to solve a certain equation in the groups
named G_n,r.
- the automorphism group $G_n,r = \Aut V_n,r$.

Notice how grep doesn’t look for words in their own right—just substrings which match
the given pattern.

b0036119@caldew:˜/demo$ grep so poems/chocolate_cake.poem
so I thought,
so it must have been really late
so I lick my finger and run my finger all over the crumbs
but it’s so nice,
’And don’t forget to take some chocolate cake with you.’

Exercise. Use grep to count how many times the word ‘cake’ appears in
poems/chocolate cake.poem. Make sure you find the option to ignore the case, so
that ‘Cake’, ‘CAKE’ and ‘cake’ would all get counted.

Within a regular expression, a caret ˆ stands for ‘the start of the line’ and a dollar $
means ‘the end of the line’. So I can search in a file for a line starting with ‘so’, instead
of just all instances of ‘so’.

33

b0036119@caldew:˜/demo$ grep ˆso poems/chocolate_cake.poem
so I thought,
so it must have been really late
so I lick my finger and run my finger all over the crumbs

The -r flag is particularly useful: it recursively searches for a pattern in the lines of
every file inside the current directory and its subdirectories.

b0036119@caldew:˜/demo$ grep -r if
jokes/joke5.txt:Crime in multi-storey car parks. That is wrong on so many different levels.
programs/run_forever.py: if seconds % 5 == 0:
programs/delay.py:if __name__ == "__main__":
programs/potatoes.py: if ticks % 4 != 0:
programs/nth_fibonacci.py:if __name__ == "__main__":
programs/nth_fibonacci.py: if display:
poems/chocolate_cake.poem:what if I go downstairs
poems/chocolate_cake.poem:So I take a knife
poems/chocolate_cake.poem:Take the knife
poems/chocolate_cake.poem:This time the knife makes a little cracky noise
poems/chocolate_cake.poem:Knife -
poems/chocolate_cake.poem:and the knife
poems/chocolate_cake.poem:’You don’t know. You don’t know if you’ve eaten a whole
poems/jabberwocky.poem:Came whiffling through the tulgey wood,

Exercise. How many files in demo contain the substring ‘cake’, ignoring upper and
lower case? How hungry do you think I was when I was writing this section?

Passing the -E flag (for extended grep) to grep interprets special characters like
()?+{}|() with their meaning in regular expression syntax, allowing you to use the full
power of regular expressions. We’ll see a little bit more in the next section, but a full
discussion is beyond the scope of an introductory course.

Instead let me point you to the website http://regexr.com/. This is an excel-
lent learning resource and features an interactive regular expression builder. For more
information about the mathematical theory of regular expressions and ‘finite state au-
tomata’, I’d recommend the book Formal languages and automata theory by Vladimir
Drobot (1989).

3.1.3 Replacing within files

The sed command (stream editor) typically takes two pieces of input: a path pointing
to a text file, and a script which describes a text transformation. The program applies
this transformation to each line and prints out the result of doing so. By default the
input file is unedited. By far the most commonly used transformation is a souped-up
version of ‘find and replace’; but sed does much more that this. We’ll just touch on the
basics.

The find-and-replace syntax is sed "s/P/R/" I, where P is the search pattern, R is
the replacement pattern and I is the input file. In this example I replace every instance
of "Humpty" I can find with the string "Henry".

b0036119@caldew:˜/demo/nursery_rhymes$ cat humpty_dumpty
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king’s horses and all the king’s men
Couldn’t put Humpty together again.
b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/Humpty/Henry/" humpty_dumpty
Henry Dumpty sat on a wall,
Henry Dumpty had a great fall.
All the king’s horses and all the king’s men
Couldn’t put Henry together again.

34

http://regexr.com/

By default the output of sed goes to stdout, so if you want to write to a file you need
to tell the shell to redirect stdout using a > symbol (see Sections 3.2.1 and 3.2.3).

b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/Humpty/Henry/" humpty_dumpty > henry
b0036119@caldew:˜/demo/nursery_rhymes$ ls
henry_dumpty humpty_dumpty
b0036119@caldew:˜/demo/nursery_rhymes$ cat henry
Henry Dumpty sat on a wall,
Henry Dumpty had a great fall.
All the king’s horses and all the king’s men
Couldn’t put Henry together again.

I enclose the script in quotes out of habit, because the patterns P and R are allowed to
contain spaces. If I don’t quote the script, the shell will break up my script into multiple
arguments and make sed unhappy.

b0036119@caldew:˜/demo/nursery_rhymes$ sed s/ and / ANDANDAND / humpty_dumpty
sed: -e expression #1, char 2: unterminated ‘s’ command
b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/ and / ANDANDAND /" humpty_dumpty
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All the king’s horses ANDANDAND all the king’s men
Couldn’t put Humpty together again.

Just like grep, P is allowed to be a regular expression. For example, I can use ˆ and
$ to refer to the beginning and end of a line.

b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/ˆHumpty/Davos/" humpty_dumpty
Davos Dumpty sat on a wall,
Davos Dumpty had a great fall.
All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

In the pattern P below, I’m using a full stop which stands for ”any single character”.
It matches the command and full stop at the end of the first and second line. I had to
escape the exclamation mark ! with a backslash, as ! has a special meaning in sed
scripts.

b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/all.$/ALL\!/" humpty_dumpty
Humpty Dumpty sat on a wALL!
Humpty Dumpty had a great fALL!
All the king’s horses and all the king’s men
Couldn’t put Humpty together again.

By default, sed will only replace P → R once per line (the first time it sees a match
for P). To get around this, pass the g (global) option to the s command by placing it
after the last /.

b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/the/of those fancy/" humpty_dumpty
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All of those fancy king’s horses and all the king’s men
Couldn’t put Humpty togeof those fancyr again.
b0036119@caldew:˜/demo/nursery_rhymes$ sed "s/the/of those fancy/g" humpty_dumpty
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.
All of those fancy king’s horses and all of those fancy king’s men
Couldn’t put Humpty togeof those fancyr again.

Unfortunately the last example matched "the" in together when I really wanted P to
match the word ‘the’ by itself. I could get around this by adding spaces to the pattern P ,
like I did with "s/ and / ANDANDAND /" above. Another option is to specify an address
before the s command. For instance, I can ask sed to replace a matches only on line 3.

b0036119@caldew:˜/demo/nursery_rhymes$ sed "3 s/the/of those fancy/" humpty_dumpty
Humpty Dumpty sat on a wall,
Humpty Dumpty had a great fall.

35

All of those fancy king’s horses and all the king’s men
Couldn’t put Humpty together again.

Exercise. This one’s a challenge—you’ll need to look through documentation. I’d suggest run-
ning info sed, or alternatively browse the same thing online at https://www.gnu.org/software/
sed/manual/sed.html. There’s also a nice tutorial avilable at http://www.grymoire.com/Unix/
Sed.html

Browse through the nursery rhymes folder at your leisure. Once you’ve sat-
isfied your desire for childish nostalgia, use sed to make the following edits to
london bridge.

1. Remove every instance of the letter e.

2. Make all letter i-s upper case.

3. Remove both upper and lower case I and i with one command.

4. Make every vowel upper case.

5. Insert a blank line between every line in the file.

6. Insert a blank line after every even numbered line in the file.

7. Transform into an early 2000s text message: remove all vowels and punctua-
tion. Make the first remaining character of every line lowercase.

Top tip! We’ve seen that the s command takes the form s/P/R/O, where P and R are as
before and O is a list of options, e.g. the global option. I actually told you a white lie: you can use
any character, not just / to separate out the arguments to s; / is just a convention. If you want
to find-and-replace something involving /, say part of a file pathfor instance, you can use another
character like | as your separator. For example:

b0036119@caldew:/tmp$ cat path.txt
/data/bin:/home/b0036119/bin:[...truncated]
b0036119@caldew:/tmp$ sed "s|/bin|/binaries_go_here|g" path.txt
/data/binaries_go_here:/home/b0036119/binaries_go_here:[truncated]

The alternative would be escaping the forwardslashes, as in
sed "s/\/bin/\/binaries_go_here/g" path.txt

which is a lot less readable.

3.2 Pipelines
3.2.1 Streams

In Linux (and other Unix-like operating systems, e.g. macOS), absolutely everything
which can send or receive data is treated in the same way as if it were a file stored
on disk. This abstraction includes processes (try looking inside /proc), ordinary files,
network connections; even devices like CD/DVD drives, printers, mice and keyboards.
People often say that ‘everything is a file’, though Linus Torvalds explained that this
really means ‘everything is a stream of bytes’.

So what is a stream? Computers typically send and receive data like water flowing
down a pipe—they receive small chunks information over time, rather than getting it
all in one go. For instance, we download or upload files over the internet as fast as we
can send them, but unless the file is very small it’ll get sent via multiple packets.

36

https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
http://www.grymoire.com/Unix/Sed.html
http://www.grymoire.com/Unix/Sed.html

Figure 20: Streams are like kids’ marble run toys. Marbles get sent along the track, just
like data gets sent through a stream. You can put more marbles into the beginning of
the track in the same way you can send data into a stream. We have to wait for marbles
to reach the bottom of the track so they can be collected. We collect one marble at a
time and the next falls into place as soon as possible. Analogously, streams read one
byte (or sometimes bigger units) of data at a time, or else wait for data to become
available.
Image: https://www.flickr.com/photos/glamhag/5565546722

Every process on Linux (and Mac, and Windows, and many other operating systems)
comes pre-connected to three streams called the standard streams; it’s free to use other
streams too, but you’re always guaranteed to have these.

stdin The standard input usually represents instructions or input data for the process
in question. By default it consists of the characters you type on your keyboard.
The commands we’ve been using so far received their instructions from command-
line arguments, so it might seem like we haven’t been using this. However, the
shell process itself had to capture your keyboard input; it did so by reading from
stdin.

stdout Standard output is the opposite—it’s where the program sends all of its results.
By default this is shown in the terminal when you run a command, so you’ve
already seen loads of stdoutput.

stderr Standard error is much the same, but is specifically intended for displaying error
messages only. The reason this is kept separate from standard output is that you
might want to pass a program’s results into another program. It’s much easier to
keep any error messages or warnings separate; otherwise we’d have to teach the
receiving program to ignore the extra error information.

Not every program gets its input from stdin; some do so exclusively via their argu-
ments. Others are stdin only, and other still can accept input from both.

Exercise. The example below features the factor program, which accepts a posi-
tive integer n and returns its prime factors p1 ≤ p2 ≤ · · · ≤ pr. Which parts of the
terminal output are stdin, -out and -err?

37

https://www.flickr.com/photos/glamhag/5565546722

Figure 21: Repeatedly redirecting program output into another program’s input leaves
us with a chain of programs called a pipeline.

b0036119@caldew:˜$ factor
12345
12345: 3 5 823
-1
factor: ’-1’ is not a valid positive integer
182374
182374: 2 67 1361
0
0:
8
8: 2 2 2

Top tip! Processes also provide an error code or return code when they complete. If you’ve
dabbled in C programming this is the integer returned by int main(). By convention, a value of 0
means that no errors occurred.

3.2.2 Pipes

The shell introduces several operators which ‘redirect’ the standard streams. This allows
us to plug the output of one command into the input of another; or to send the output
of a command to a file and suppress it in the terminal. The process of arranging this
is called piping; we pipe the first program into the second. To create a pipe we use the
vertical bar character | (also called a pipe) between two commands. The shell knows
that it needs to interpret the | as a pipe instruction, rather than sending a literal |
character as an argument to the first command.

It’s probably best to demonstrate with examples.

b0036119@caldew:˜$ ls -al | grep py

38

drwxr-xr-x+ 6 b0036119 nma 6 Feb 2 14:22 .ipython
drwxr-xr-x+ 2 b0036119 nma 4 Apr 13 10:34 .jupyter
drwxr-xr-x+ 2 b0036119 nma 4 May 25 12:53 .pylint.d
-rw-------+ 1 b0036119 nma 2574 Jun 23 12:16 .python_history
-rw-r--r--+ 1 b0036119 nma 450 Jun 22 17:24 .pythonstartup.py
-rw-r--r--+ 1 b0036119 nma 449 Mar 7 16:52 .pythonstartup.py˜
-rw-r--r--+ 1 b0036119 nma 60 Jun 15 15:00 temp.py˜

Say I was looking for Python files and folders in my home directory. The first program
is ls, which I’ve used to print a detailed listing of everything in my home directory.
(Notice that I can combine the flags -a and -l into -al; this always works for options
with one letter names.) Unfortunately I’ve got loads of files there, so I filtered the output
using grep (Section 3.1.2) to just those lines which contain the string ’py’. Notice here
that if I only provide a search expression, grep will filter the text it receives from its
standard input.

How many files did I find? We can find out programatically by piping the output of
grep into another program.

b0036119@caldew:˜$ ls -al | grep py | wc -l
7

The wc program stands for word count. It counts the number of bytes, words and lines
in is standard input (if no file name is given). I’ve used the -l option here to only ask
for the number of lines. If we were feeling really adventurous we could try to prime
factorise this number.

b0036119@caldew:˜$ ls -al | grep py | wc -l | factor
7: 7

It turns out that I have a prime number’s worth of Python files in my home directory.
This is a silly example but it drives home an important part of Unix’s approach to

computing. Rather than have lots of programs for general purpose use, the command
line tools are a set of small, tailored programs which do one job really well. It’s the
user’s job to chain these programs together as needed for their specific problem.

Exercise. The curl (see URL) command can be used to retrieve a file from the
internet. It places the file’s contents on stdout and prints some network statistics
on stderr; try curl www.example.com for instance. Use curl, grep and wc -l to
count how many times the word “Linux” occurs in the Wikipedia article on Linux.
Can you find an article which (ignoring upper- and lowercase) mentions its own
name more than a thousand times?

3.2.3 Redirecting output to file

Any command’s stdout can be written to a file instead of displayed using the screen by
using the > operator.

b0036119@caldew:˜/demo$ grep -i sword "Tower of Joy.txt"
"When King’s Landing fell, Ser Jaime slew your king with a golden sword, and I
wondered where you were." Ned’s wraiths moved up beside him, with shadow swords in
hand. They were seven against three.
"And now it begins," said Ser Arthur Dayne, the Sword of the Morning. He unsheathed
Dawn and held it with both hands. The blade was pale as milkglass, alive with light.
b0036119@caldew:˜/demo$ grep -i sword "Tower of Joy.txt" > sword.txt
b0036119@caldew:˜/demo$ cat sword.txt

39

"When King’s Landing fell, Ser Jaime slew your king with a golden sword, and I
wondered where you were." Ned’s wraiths moved up beside him, with shadow swords in
hand. They were seven against three.
"And now it begins," said Ser Arthur Dayne, the Sword of the Morning. He unsheathed
Dawn and held it with both hands. The blade was pale as milkglass, alive with light.

If the target file already exists, it is emptied before being filled with the process’ stdout.

b0036119@caldew:˜/demo$ echo I’ve got a big sword > sword.txt
b0036119@caldew:˜/demo$ cat sword.txt
I’ve got a big sword

To change this behaviour, use two greater-than signs >> to append to the end of the
target file.

b0036119@caldew:˜/demo$ echo \"My liege lord has granted me two swords,\" spoke
Ser Dual of House Wield. >> sword.txt
b0036119@caldew:˜/demo$ cat sword.txt
I’ve got a big sword
"My liege lord has granted me two swords," spoke Ser Dual of House Wield.

(The backslashes are needed to send the quote characters to echo and stop them from
being interpreted by the shell.)

A common trick to silence a program with lots of output is to send it to the special file
/dev/null, which ignores all of its input. Fortunately, any error messages are preserved.

b0036119@caldew:˜/demo/programs$ python lots_of_output.py > /dev/null
Fizz
Buzz
Fizz
Fizz
Buzz
Fizz
Fizzbuzz!
[...output repeats for a long time, before ending with an error...]
Traceback (most recent call last):

File "lots_of_output.py", line 12, in <module>
raise Exception("Look, standard error isn’t redirected")

Exception: Look, standard error isn’t redirected
b0036119@caldew:˜/demo/programs$ python lots_of_output.py > /dev/null
Traceback (most recent call last):

File "lots_of_output.py", line 12, in <module>
raise Exception("Look, standard error isn’t redirected")

Exception: Look, standard error isn’t redirected

Exercise. Another useful trick for a long-running process is to redirect it to a file
but view its output in another window. Open two terminals A and B. In terminal
A, run potatoes.py in the demo/programs folder and redirect its output to a file
inside /tmp. In terminal B, use tail -f to view the output file and watch it update
in real time. (The -f stands for follow.)

Top tip! Similarly you can use < to use a file as a process’ stdin, even if the program won’t
normally read from files. Here’s an example with the factor command.

b0036119@caldew:/tmp$ cat numbers.dat
5

40

6
7
b0036119@caldew:/tmp$ factor numbers.dat
factor: ’numbers.dat’ is not a valid positive integer
b0036119@caldew:/tmp$ factor < numbers.dat
5: 5
6: 2 3
7: 7

3.3 Other useful shell functions
Again this section is mostly for reference.

3.3.1 Boolean && operator

As well as piping |, another means to chain commands together is the double-ampersand
&&. This is a binary operator which takes two commands A && B. It runs A, and if
it successfully completes returns B. If A terminates with an error, the B command
isn’t run. For instance, maybe A creates a file that B reads from. If there’s a problem
with A, rather than running B and getting twice as many error messages, && allows you
to stop as soon as something goes wrong.

Here’s an example. Maybe I’ve been writing a C program, and I want to compile and
run it in one command. There are two ways to do this: by separating my commands
with a semicolon ; or by using &&.

gcc adding_in_c.c -o adding ; ./adding
0.1 + 0.2 = 0.3000000119209290
gcc adding_in_c.c -o adding && ./adding
0.1 + 0.2 = 0.3000000119209290

No difference this time, as both commands complete successfully. But if I try to compile
a file with a syntax error, I’m going to get different results.

b0036119@caldew:˜/demo/programs$ gcc syntax_error.c -o example; ./example
syntax_error.c: In function ’main’:
syntax_error.c:5:2: error: expected ’,’ or ’;’ before ’int’

int c = "blah blah blah;
ˆ

syntax_error.c:5:10: warning: missing terminating " character [enabled by default]
int c = "blah blah blah;

ˆ
syntax_error.c:5:2: error: missing terminating " character

int c = "blah blah blah;
ˆ

bash: ./example: No such file or directory
b0036119@caldew:˜/demo/programs$ gcc syntax_error.c -o example && ./example
syntax_error.c: In function ’main’:
syntax_error.c:5:2: error: expected ’,’ or ’;’ before ’int’

int c = "blah blah blah;
ˆ

syntax_error.c:5:10: warning: missing terminating " character [enabled by default]
int c = "blah blah blah;

ˆ
syntax_error.c:5:2: error: missing terminating " character

int c = "blah blah blah;
ˆ

3.3.2 The clear command

If you’ve got a terminal full of output and you want to completely discard it so you
can concentrate on something else, the clear command is your friend. It simply prints

41

a stream of empty lines to the terminal, so that you have the appearance of a blank
workspace. (The history will still be there if you need to scroll back to retrieve it.)

3.3.3 Aliases

If you have to use all sorts of commands all day long, it’s easy to forget all the common
options and flags. Or maybe you often chain commands together and can’t be bothered
to re-type all the pipework. Enter aliases: these are a way to define abbreviations that
can be used in place of commands.

They’re made using the alias command, which is a part of the bash shell; it’s
not a separate program sitting somewhere on your computer. The syntax is alias
<short>="<long>". For example, maybe you want to abbreviate ls -l to ll.

b0036119@caldew:˜/demo/programs$ alias ll="ls -l"
b0036119@caldew:˜/demo/programs$ ll
total 8
-rw-r--r--+ 1 b0036119 nma 117 Jun 23 17:49 adding_in_c.c
-rw-r--r--+ 1 b0036119 nma 430 Jun 28 11:50 delay.py
-rw-r--r--+ 1 b0036119 nma 130 Jun 28 11:50 hello_world.py
-rw-r--r--+ 1 b0036119 nma 247 Jun 29 13:39 lots_of_output.py
-rw-r--r--+ 1 b0036119 nma 466 Jun 28 12:32 nth_fibonacci.py
-rw-r--r--+ 1 b0036119 nma 246 Jun 28 11:51 potatoes.py
-rw-r--r--+ 1 b0036119 nma 178 Jun 28 11:51 run_forever.py
-rw-r--r--+ 1 b0036119 nma 118 Jun 29 15:21 syntax_error.c

If you run alias without any arguments, you’ll see the current list of aliases sorted
alphabetically.

b0036119@caldew:˜/demo/programs$ alias
alias calc=’gnome-calculator’
alias du=’du -h --max-depth 1’
alias ll=’ls -l’
alias open=’xdg-open’
alias terminal=’gnome-terminal’

It turns out I like abbreviations; but sometimes I just want a simple name for something
that’s harder to remember.

There’s nothing stopping you from making an alias whose name is a pre-existing
command; indeed that’s exactly what I do for du above. In this situation you can
bypass the alias by escaping it with a backslash.

b0036119@caldew:˜/demo$ du
38K ./easter_egg_hunt
17K ./jokes
9.5K ./programs
8.0K ./poems
8.0K ./nursery_rhymes
121K .
b0036119@caldew:˜/demo$ \du
3 ./easter_egg_hunt/down_down
[... output truncated ...]
17 ./jokes
10 ./programs
8 ./poems

42

8 ./nursery_rhymes
121 .

Without the alias, the filesizes were in blocks rather than human readable units; also I
saw the sizes of more deeply nested folders. If you suddenly decide that your alias was
a horrible idea, use unalias to remove it.

b0036119@caldew:˜/demo$ unalias ll
b0036119@caldew:˜/demo$ alias
alias calc=’gnome-calculator’
alias du=’du -h --max-depth 1’
alias grep=’grep --color=auto’
alias open=’xdg-open’
alias terminal=’gnome-terminal’

You can even include pipes if you want: try alias la="ls -ahl" | less to see every
file in full detail via less’ scrollable output pager.

Note that an alias only applies to the current terminal. If you want to make it
permanent, add it to your user ˜/.bashrc file;8 any commands present in that file will
automatically be executed when you start a new terminal.

Exercise. Make an alias for a command you’ve been using a lot today that includes
your favourite options. For inspiration, my favourite options for du are -h for human
readable and --max-depth=1 so that I can see file sizes one level at a time.

If you’re feeling brave, save it in your ˜/.bashrc file if to reuse it in other
terminals and sessions.

4 Automation
This section will tie together all of the terminal skills we’ve seen so far, by explaining
how we can use them to automate boring, repetitive but necessary tasks.

4.1 Scheduling commands
If you check the list of processes (Section 5) running on your machine, you should find
that there’s one called cron.

b0036119@caldew:˜/teaching/linux$ ps -aux | grep cron
root 1221 0.0 0.0 23652 548 ? Ss Jun14 0:01 cron
b0036119 23865 0.0 0.0 11992 944 pts/8 SN+ 11:13 0:00 grep cron

cron is a job scheduler : a program which periodically runs other programs at certain
times of day. Its name comes from cronos (χρóνoς), the Greek word for ‘time’. Maybe
you have a bunch of log files that need deleting every week, or perhaps you want to
make a backup of your files every night. Maybe you want to check how much memory
or disk space is available and keep track of this in a log file. If this sounds similar to
what you need, cron is probably the tool for you.

Maths & Stats only: Backups of the /home area and the /data drive are made automatically,
so there’s no need to use cron to make your own backup system.

Let’s walk through an example. Say I want to record how much space is available
on the /data drive every 10 minutes. The first thing we should do is work out what

8See http://askubuntu.com/q/17536.

43

http://askubuntu.com/q/17536

command we want to run. df is the command to use (Section 2.4.2), but it has a lot of
output.

b0036119@caldew:˜$ df -h
Filesystem Size Used Avail Use% Mounted on
none 3.9G 52M 3.8G 2% /run/shm
none 100M 412K 100M 1% /run/user
/dev/sdb2 325G 17G 292G 6% /backup
/dev/sda3 128G 4.9G 124G 4% /WinData
/dev/sda6 28G 1.2G 25G 5% /var
/dev/sda7 28G 44M 26G 1% /opt
/dev/sda9 321G 17G 288G 6% /data
mas-home-pg:/tank/home/b0036119 2.0G 1.4G 621M 70% /home/b0036119
[... output trimmed ...]

If I’m going to stick this in a log, I’d better only extract the information I need. A pipe
to grep will do the trick.

b0036119@caldew:˜$ df -h | grep /data$
/dev/sda9 321G 17G 288G 6% /data

I can redirect this to a file with >; but since I’m making a log I want to append with >>.

b0036119@caldew:/tmp$ df -h | grep /data$ >> data_drive.log
b0036119@caldew:/tmp$ cat data_drive.log
/dev/sda9 321G 17G 288G 6% /data

If we’re going to do this properly we should make a note of the time and date each time
we log. I’ll stick with the default date format, which is human-readable.

b0036119@caldew:/tmp$ date
Thu Jun 30 11:54:00 BST 2016

I’m almost done building my command for cron now.
b0036119@caldew:/tmp$ rm data_drive.log
b0036119@caldew:/tmp$ date >> data_drive.log && df -h | grep /data$ >> data_drive.log
b0036119@caldew:/tmp$ cat data_drive.log
Thu Jun 30 12:00:02 BST 2016
/dev/sda9 321G 17G 288G 6% /data

In Maths & Stats, commands run by cron use your home directory as their working
directory. This is a setting that can be changed by system administrators though, so
I’d recommend you use one of two approaches to be explicit about where you want to
run your commands.

• Always use absolute paths. Don’t forget that you can use ˜ as a shortcut your
home area.

• Include a cd command. So if I wanted to run a command C inside ˜/logs I could
use cd ˜/logs && C. If for some reason the logs directory doesn’t exist, the &&
operator will raise an error, rather than running C in the wrong place.

Thus the command I want to use is
cd ˜ && date >> data_drive.log && df -h | grep /data$ >> data_drive.log

4.1.1 Specifying the runtime

The list of jobs is stored in ‘cron table’, or crontab for short. To edit this list use
the crontab -e command. This opens a text file in an editor, in which you enter a
cron If you’ve never used crontab before, this file will be empty (or possibly consist of
comments after a # symbol.)

44

Top tip! According to man crontab, the editor is determined by the environment variables
$VISUAL and $EDITOR. (We’re not going to cover environment variables, so I’m going to have to defer
to the internet this time.) On both my machine and the Computer Science cluster, the default
editor was vim (see Section 2.3.3), which can be intimidating for novice users. You can override this
in your current terminal session by writing

b0036119@caldew:/tmp$ export VISUAL="gedit --new-window --wait"

To check this worked correctly, use echo:
b0036119@caldew:/tmp$ echo $VISUAL
gedit --new-window

Then you should be able to edit the crontab in gedit. The table will be updated when the new
gedit window closes.

Each non-commented line describes one cron command. The format is

m h D M Dw C

where the symbols stand for the following data.

• m is a number in the range 0–59 specifying a minute,

• h is a number in the range 0–24 specifying an hour,

• D is a number in the range 1–31 specifying an day of the month,

• M is a number in the range 1–12 specifying a month,

• Dw is a number in the range 1–7 specifying a day of the month: 1 for Monday,
2 for Tuesday, . . . , through to 7 for Sunday.

• C is the command you want to execute.

Each of the date and time fields can be extended to more than a single value in four
ways:

• Use an asterisk * to stand for ‘anything’;

• Use a hyphen - to indicate a range;

• Use a comma , to stand for ‘and’.

• Use a slash /n to stand for ‘divisible by n’.

See Table 1 for some examples.

Exercise. Use cron to write an encouraging or motivational message to a file
in your home folder at a time interval of your choice. For bonus points, write
two more encouraging or motivational messages, and use the shuf command to
randomly select one every time the cronjob runs. For bonus bonus points, can you
find a way to print your messages to screen when the cronjob runs? (Try wall, but
use it responsibly!)

Important: Before the session ends, remove any cron jobs by running crontab
/dev/null. (Sub-exercise: why does this work?) We’re kindly using Computer Sci-
ence’s cluster machines, and since we’re only going to use them today we shouldn’t
leave anything running periodically!

45

Time specification Meaning

30 10 * * * 10:30 every day
00,15,30,45 * * * * every fifteen minutes
*/15 * * * * every fifteen minutes (shorthand)
0 0 * * 7 midnight every Sunday

0 */4 * * 1-5 every four hours Monday to Friday
0 15 25 12 * 3pm Christmas Day
0 0 1 * * midnight on the first day of the

month
00,20, 40 9-17 * * 1-3,5 every twenty minutes 9am–5pm on

weekdays except Thursday

Table 1: Examples of the crontab date/time syntax.

Top tip! Because cron isn’t running in a terminal, there’s no way to feed your commands
stdinput nor to display any stdoutput or stderrors. As as result, your commands need to get all of
their inputs from their arguments. Any output and errors are sent to you via the system’s internal
email. (It’s not sent over the internet like regular email; but nonetheless it’s an electronic message.)

If cron has emailed output to you, you may notice a ‘you have new mail’ message when logging
in remotely.

b0036119@caldew:/tmp$ ssh caldew
b0036119@caldew’s password:
Welcome to Ubuntu 14.04.4 LTS (GNU/Linux 3.13.0-88-generic x86_64)

* Documentation: https://help.ubuntu.com/

9 packages can be updated.
4 updates are security updates.

*** System restart required ***
You have new mail.

Maths and Stats users can use mutt on the command line to read this mail; I’m not sure about
Fedora.

4.2 Bash shell scripting
A shell script is a text file containing a list of shell commands; one on each line. If
there’s a complicated operation you need to do frequently involving ten commands,
say, it’s easier to run one script than run those ten commands each time. Perhaps
you want to write a loop to execute a command with different arguments, or to only
run some commands if some condition holds. Or you might want to repeatedly run a
simulation with different parameters. In other words, maybe you want to do some basic
programming. Shell scripts allow you to do all this and more.

Let’s see an example of a shell script and go through it line-by-line.

b0036119@caldew:˜/demo/scripts$ cat simple_shell_script.sh
#! /bin/bash
echo "Script beginning in $(pwd)"
sleep 3
echo "Script finished"

The first line is a ‘shebang line’ (hash for # and bang for !). This indicates that the
file’s name is meant to be passed as an argument to /bin/bash, which is where the

46

shell program is conventionally located.9 Strictly speaking, for maximum compatibility
scripts should be marked as running under /bin/sh, but bash will almost always be
available and will make writing shell scripts easier.

Maths & Stats only: The default user shell in Maths & Stats is tcsh. You can change this
system-wide by talking to a computing officer; change this on your machine by editing your terminal
settings. If you just want to play around, just run bash in whatever shell you’re using.

Once the shell script has been marked as executable with chmod, we can use the ./
notation (Section 2.3.5) to run the script.

b0036119@caldew:˜/demo/scripts$ chmod +x simple_shell_script.sh
b0036119@caldew:˜/demo/scripts$./simple_shell_script.sh
Script beginning in /home/b0036119/demo/scripts
Script finished

The result is the same as if we had called sh directly from disk:
b0036119@caldew:˜/demo/scripts$ /bin/bash ˜/demo/scripts/simple_shell_script.sh
Script beginning in /home/b0036119/demo/scripts
Script finished

Every other line is an instruction that gets sent to the shell, just like all the com-
mands you’ve been typing into the terminal. Unlike the normal ‘interactive mode’ in
the terminal, the script doesn’t wait for input from you or me—it just executes com-
mands one at a time, as quickly as possible. sleep is a new command which takes one
argument, a number n. It does nothing for n seconds and then terminates. It’s just here
as a dummy command to give the impression that the script’s doing something.

4.2.1 Substitution

We’ve used echo many times despite never formally introducing it; it prints its argu-
ments to stdout, which is why the script has output displayed on screen. There is
something new here though: the notation $(pwd) which indicates command substitu-
tion. The shell script spawns a child sh process, uses it to run pwd and keeps its output
(stdout). Once the child has finished, control returns to the original sh running the
script. The substring “$(pwd)” will be replaced with the output of the child process.

Here’s another example of command substitution.
b0036119@caldew:˜/demo/scripts$ cat num_files_pwd.sh
#! /bin/bash
echo "Number of files in $(pwd) is $(find -type f | wc -l)."
echo "There are also $(find -type d -not -name . | wc -l) directories".

Pipes work just fine! In fact we can even include substitute files’ contents using cat:

b0036119@caldew:˜/demo/scripts$ cat ./repeated_sed.sh
#! /bin/bash
echo "This text file contains the letter ’t’." > example.file
sed -i "s/t/tt/g" example.file
sed -i "s/t/tt/g" example.file
sed -i "s/t/tt/g" example.file
echo "The result is ’$(cat example.file)’."

We can do basic arithmetic on integers using two pairs of brackets. This is called
arithmetic expansion.

9 The Python files in demo/programs have their own shebang lines, although they have a slightly
different format.

47

b0036119@caldew:˜/demo/scripts$ echo $((2 + 2))
4
b0036119@caldew:˜/demo/scripts$ echo $((2 ˆ 10))
8
b0036119@caldew:˜/demo/scripts$ echo $((2 ** 10))
1024
b0036119@caldew:˜/demo/scripts$ echo $((1 / 0))
b0036119@caldew:˜/demo/scripts$ echo $((5 / 2))
2
b0036119@caldew:˜/demo/scripts$ echo $((-5/2))
-2

Note that the power operation is ** (ˆ denotes xor) and that integer division is rounded
towards zero. If you want to work with decimal (floating-point) numbers, take a look
at the bc (basic calculator) command.

b0036119@caldew:˜/teaching/linux$ echo "0.1 + 0.2" | bc -q
.3

4.2.2 Handling arguments

sh is just like any program: it accepts a variable-length list of arguments and does
something with them. Scripts can access those arguments, so that they themselves act
like an ordinary program. These are accessible via the variables $1, $2, ...;10 missing
variables are passed as an empty string ‘’. There’s also $0, which is the name of the
script currently being executed. Let’s see an example.

b0036119@caldew:˜/demo/scripts$ cat num_files_general.sh
#! /bin/bash
echo "Running $0 with argument ’$1’"
echo "Number of files in $(pwd) is $(find $1 -type f | wc -l)."
echo "There are also $(find $1 -type d -not -name . | wc -l) directories".

b0036119@caldew:˜/demo/scripts$./num_files_general.sh
Running ./num_files_general.sh with argument ’’
Number of files in /home/b0036119/demo/scripts is 5.
There are also 0 directories.

b0036119@caldew:˜/demo/scripts$./num_files_general.sh ../
Running ./num_files_general.sh with argument ’../’
Number of files in /home/b0036119/demo/scripts is 50.
There are also 19 directories.

This worked out quite nicely. If I don’t pass an argument to the script then $1 is the
empty string. In this situation, the subcommands find do not get passed an empty
string as an argument; it’s as if I never wrote $1 in the first place.

Exercise. Write a shell script that takes the name of two files F1 and F2 and prints
out the number total number of lines in both files.

4.2.3 Conditionals

The syntax for if statements takes the general form:

if [<condition>]
then

10For indices greater than 9 enclose them in braces: ${10}, ${11}, ...

48

<statement 1>
...
<statement n>

fi

The spaces after the [and before the] are important. The [is effectively a command
that absorbs all arguments up to the next] and determines if they evaluate to True or
False. It’s equivalent to the test command, except test doesn’t need a closing square
bracket. In fact, test came first and the alternate name [came later as a convenience.

A <condition> can be built out of a number of boolean expressions combined to-
gether with various operators. See man test for a full list. We’ll just mention a few
commonly used examples.

[-f FILE] tests to see if the given FILE exists.

[-d DIR] tests to see if the given DIRectory exists.

[I1 -eq I2] tests to see if the integers I1 I2 are equal, i.e. -eq stands for =. Similarly
you can use -ne, -gt, -ge, -lt and -le for 6=, >, ≥, < and ≤.

[A -a B] tests if both A and B are true.

[A -o B] tests if A or B or both are true.

[! A] tests if A is false.

[S == T] tests if the strings S and T are equal.

[S != T] tests if the strings S and T are not equal.

Exercise. Why can’t we use >, ≥, < and ≤ for mathematical comparisons?

Like with many programming languages, there are elif (else if) and else statements
that let you build more complicated chains of condition handling. For instance, you can
say:

if [-d build]
then

rm -r build
elif [$1 == "party"]
then

echo "Let’s have a PARTAY"
else

#nothing to delete
echo "Build directory doesn’t exist"

fi

Note that hashes # denote comments.

Exercise. Write a shell script that accepts one argument. If that argument is the
name of a directory D in the working directory, select a file from D at random and
print its head. If not, and there is a file called D in the working directory, print its
head. Otherwise, or if no argument is provided, print a suitable error message.

49

4.2.4 Loops

Just like your favourite programming language, shell scripts support for loops,while
loops and until loops; we’ll just cover the former. The syntax is

for <variable> in <list>
do

<statement_1>
...
<statement_n>

done

The <list> is a space separated list of values you want the <variable> to loop through.
To access the value of <variable> in the <statement>s, prefix it with a dollar $. For
instance:

b0036119@caldew:˜/demo/scripts$ cat counting_loop.sh
#!/bin/bash
for i in 1 2 3 4 5
do

echo "The value of i is $i"
done
b0036119@caldew:˜/demo/scripts$./counting_loop.sh
The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4
The value of i is 5

For a more general sequence, I need to substitute the output of the seq (sequence)
command.

b0036119@caldew:˜/demo/scripts$ cat counting_loop_2.sh
#!/bin/bash
for i in $(seq 3 4 20)
do

echo "The value of i is $i"
done
b0036119@caldew:˜/demo/scripts$./counting_loop_2.sh
The value of i is 3
The value of i is 7
The value of i is 11
The value of i is 15
The value of i is 19

I don’t just have to loop over integers either.

b0036119@caldew:˜/demo/scripts$ cat string_loop.sh
#!/bin/bash
for name in world sailor stranger $USER "Barrack Obama" you
do

echo "Hello, $name!"
done
b0036119@caldew:˜/demo/scripts$./string_loop.sh
Hello, world!

50

Hello, sailor!
Hello, stranger!
Hello, b0036119!
Hello, Barrack Obama!
Hello, you!

This explains why I needed the $() in counting loop 2.sh.

b0036119@caldew:˜/demo/scripts$ cat counting_loop_2_error.sh
#!/bin/bash
for i in seq 3 4 20
do

echo "The value of i is $i"
done
b0036119@caldew:˜/demo/scripts$./counting_loop_2_error.sh
The value of i is seq
The value of i is 3
The value of i is 4
The value of i is 20

Top tip! Just like most programming languages, you can use the break and continue keywords
to exit a loop or skip to the next iteration.

There is a special shorthand to loop over the script’s arguments, namely "$@".

b0036119@caldew:˜/demo/scripts$ cat echo_arguments.sh
#! /bin/bash
echo "Here are the arguments I received:"
for arg in "$@"
do

echo "\"$arg\""
done
b0036119@caldew:˜/demo/scripts$./echo_arguments.sh a b c "d e f"
Here are the arguments I received:
"a"
"b"
"c"
"d e f"
b0036119@caldew:˜/demo/scripts$./echo_arguments.sh
Here are the arguments I received:

The quotes are necessary to handle spaces in arguments correctly. If I leave the quotes
out, as in echo arguments error.sh I get the following.

b0036119@caldew:˜/demo/scripts$./echo_arguments_error.sh a b c "d e f"
Here are the arguments I received:
"a"
"b"
"c"
"d"
"e"
"f"

51

Exercise. Write a shell script that takes the names of an arbitrary number of files
F1, F2, . . . and prints out the number total number of lines in all files. Include a
suitable error message if an arguments isn’t the name of a file!

I haven’t explained how to use variables, so here’s a quick intro. You can make a
variable called sum with value 0 by writing sum=0; don’t include spaces around the
= or the equals sign will be interpreted as an argument to pass to a sum command.
You can increment sum by assigning an arithmetic expression; for instance:

sum=$(($sum + 2))

4.2.5 Glob patterns

We’ve seen how the shell expands substrings starting with $; but it does more pattern-
matching according to a glob pattern. There are four special characters in such a
pattern:

* matches any string of characters, including the empty string.

? matches exactly one character.

[...] matches any character contained within the braces. You can use a hyphen to
specify a range too.

This is similar to, but not the same as regular expression syntax. In particular * and ?
take on more general meanings in a regular expression.

Let’s have some examples.
b0036119@caldew:˜$ ls
archive bin Downloads parallel robertson temp.pdf
Audio demo Dropbox Pictures scripts thompsons_v
barker Desktop Metro_Map.pdf R teaching website
b0036119@caldew:˜$ echo d*
demo
b0036119@caldew:˜$ echo D*
Desktop Downloads Dropbox
b0036119@caldew:˜$ echo [dD]*
demo Desktop Downloads Dropbox
b0036119@caldew:˜$ echo *.pdf
Metro_Map.pdf temp.pdf
b0036119@caldew:˜$ echo ???????
archive Desktop Dropbox scripts website
b0036119@caldew:˜$ echo ??
??

Notice that in the last example there was no match, so the pattern ?? was not expanded
by the shell.

The reason I’m including this section here is that they can be very handy when
writing for loops. For instance, here’s a script which compiles all LATEX files within
current directory. Note that $? contains the return code of the last-run command.

#! /bin/bash
for tex_file in *.tex
do

echo -n "Compiling $tex_file... "
pdflatex -interaction=batchmode -synctex=1 $tex_file > /dev/null
if [$? -eq 0]
then

echo "3"
else

52

echo "7"
fi

done

4.3 Further reading
I haven’t mentioned the use of ‘environment’ or ordinary variables in shell scripts; nor
have I explained how to define and use functions. These can be very powerful tools to
have at your disposal!

The make command is a more advanced system for automation, used by many soft-
ware projects to automate the process of building from source code. It allows you to
specify a hierarchy of named ‘targets’ as a list of shell commands. For instance, if I was
preparing a Makefile to help compile a LATEX document I might have three ‘targets’:
make draft to quickly check that I haven’t made an error; make final to compile the
document for ‘final’ publication, and make clean to remove the auxiliary files created
by the latex executable.

Take a look at the make documentation for more info, or at for a terse introduction.

5 Process control
This section gives a brief overview of how you’d monitor and interact with multiple
processes that are being run.

5.1 Background and foreground
While running any command in a terminal, you can press Control-Z to pause it and
return to the terminal prompt.11

b0036119@caldew:˜/teaching/linux$ python3
Python 3.4.3 (default, Oct 14 2015, 20:28:29)
[GCC 4.8.4] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
ˆZ
[1]+ Stopped python3

The three arrows >>> are the default Python prompt, just like how the shell uses a
dollar $ as a prompt. The caret ˆZ is the terminal’s notation to say that I pressed the
Control key with Z. The [1] indicates that python3 is the first in the list of processes
running in or paused by this terminal. The word “stopped” is a little dramatic; I prefer
to think of such processes as “suspended.” we can restart python3 by typing fg to bring
the process to the foreground.

b0036119@caldew:˜/teaching/linux$ fg
python3
print(’hello’)
print(’hello’)
hello
>>> x = 2
>>> x
2
>>> quit()

11This is achieved by sending a SIGTSTP signal to the process; see https://en.wikipedia.org/wiki/
Unix_signal.

53

http://makefiletutorial.com/
https://en.wikipedia.org/wiki/Unix_signal
https://en.wikipedia.org/wiki/Unix_signal

Alternatively if I stop a process, I can allow it to continue in the background by typing
bg. This is the same as starting the process and putting an & after its name.

b0036119@caldew:˜/˜$ firefox
ˆZ
[1]+ Stopped firefox
b0036119@caldew:˜/˜$ bg
[1]+ firefox &
b0036119@caldew:˜/˜$ 1467381921128 addons.xpi
WARN Bootstrap state is invalid (missing add-ons:
/home/b0036119/.mozilla/firefox/qryzz7h5.default/extensions/
firefox-hotfix@mozilla.org.xpi)

Note that processes running in the background will continue to print their stdout and
stderr to the terminal. Despite the gibberish on screen, the shell is still happy to accept
commands.

Let’s try the jobs command.

b0036119@caldew:˜/˜$ jobs
[1]+ Running firefox &

This prints the list of programs you’ve started from or paused in the current terminal,
together with a job number. If I start some more commands and pause them, the list
gets longer.

b0036119@caldew:˜/˜$ python3 &
[2] 15666
b0036119@caldew:˜/˜$ Python 3.4.3 (default, Oct 14 2015, 20:28:29)
[GCC 4.8.4] on linux
Type "help", "copyright", "credits" or "license" for more information.
jobs
[1]- Running firefox &
[2]+ Stopped python3

I’m going to start a new dummy job which does nothing, suspend it, and then resume
running it in the background.

b0036119@caldew:˜/˜$ sleep 100
ˆZ
[3]+ Stopped sleep 100
b0036119@caldew:˜/˜$ jobs
[1] Running firefox &
[2]- Stopped python3
[3]+ Stopped sleep 100
b0036119@caldew:˜/˜$ bg %3
[3]+ sleep 100 &

The % stands for ‘job number’, so I asked the shell to put job number 3 in the background.
Commands that interact with other processes like fg, bg and kill know how to interpret
the % notation.

After 100 seconds, the sleep command is done. The next time I run a command,
the shell will notify me of this and it will no longer be available in the jobs list.

b0036119@caldew:˜/˜$ echo "blah blah blah"
blah blah blah
[3]- Done sleep 100
b0036119@caldew:˜/˜$ jobs
[1]- Running firefox &
[2]+ Stopped python3

54

Running in
foreground

Running in
background

Suspended

Terminated

Control-Z

bg

fg

fg

Control-C

Figure 22: The different states that a job can be in, and how to navigate between them.

If I want to suspend job 1, I can bring it to the foreground and then suspend with
Control-Z.

b0036119@caldew:˜$ fg %1
firefox
ˆZ
[1]+ Stopped firefox
b0036119@caldew:˜$ jobs
[1]+ Stopped firefox
[2]- Stopped python3
b0036119@caldew:˜$

What about if I want to permanently stop a process? I can bring it to the foreground
with Control-C, or else use the kill command.

b0036119@caldew:˜$ fg %1
firefox
ˆC
b0036119@caldew:˜$ jobs
[2]+ Stopped python3
b0036119@caldew:˜$ kill %2
b0036119@caldew:˜$ jobs
[2]+ Terminated python3

Top tip! When your shell closes, any processes it has started are terminated. This isn’t always
what you want! For instance, you might want to start a simulation running on a remote machine,
close the connection and come back later to see the results.

To avoid the auto-termination, you can run your command through nohup (no hangup); this
ignores the terminate signal that gets sent when the shell is closed. Consult a man page or Wikipedia
for more information.

5.2 Monitoring
The single most important command for keeping an eye on your programs is top (table
of processes).

b0036119@caldew:˜$ top

55

top - 17:24:06 up 17 days, 6:27, 6 users, load average: 0.10, 0.18, 0.18
Tasks: 284 total, 1 running, 279 sleeping, 3 stopped, 1 zombie
%Cpu(s): 0.7 us, 0.4 sy, 1.3 ni, 97.6 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1611 root 20 0 724924 210292 179748 S 9.0 2.6 1986:13 Xorg
5277 b0036119 32 12 587048 41880 9184 S 4.3 0.5 1288:05 gnome-system-mo
9403 b0036119 32 12 1816160 248424 39264 S 4.3 3.1 47:58.30 texmaker
5045 b0036119 32 12 1764392 222184 23964 S 1.7 2.8 691:27.52 compiz
4773 b0036119 28 8 394124 68844 1700 S 0.7 0.9 36:30.36 ibus-daemon
5193 b0036119 24 4 889168 38620 15956 S 0.3 0.5 7:27.20 gnome-terminal

20011 b0036119 35 15 27412 1984 1256 S 0.3 0.0 12:54.16 top
23096 b0036119 32 12 1696112 359212 60416 S 0.3 4.4 6:31.35 chromium-browse

1 root 20 0 34192 2376 912 S 0.0 0.0 0:03.25 init
5 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 kworker/0:0H
7 root 20 0 0 0 0 S 0.0 0.0 7:23.37 rcu_sched

By default, processes are sorted by CPU usage and the table is updated every 5 seconds.
It’s useful to get a quick overview of what programs are using the most resources.

Sometimes you want a static list of processes, e.g. for use in a log or to be consumed
by another program. The ps (process status) is useful for this. By default it prints out
a list of commands that you’ve launched or suspended in the current terminal.

b0036119@caldew:˜$ ps
PID TTY TIME CMD

18309 pts/22 00:00:00 ps
27817 pts/22 00:00:02 bash

We can ask it to display more though: ps u shows you all commands you’ve started in
any terminal.

b0036119@caldew:/tmp$ ps u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
b0036119 5260 0.0 0.0 24132 556 pts/5 Ss Jun14 0:00 bash
b0036119 5383 0.0 0.0 216984 6708 pts/5 S+ Jun14 0:00 /usr/bin/python3
b0036119 13462 0.0 0.0 25216 6372 pts/8 SNs Jun29 0:00 bash
b0036119 18346 0.1 0.0 24124 5016 pts/21 SNs 17:31 0:00 bash
b0036119 18377 0.0 0.0 48336 3892 pts/21 SN+ 17:31 0:00 ssh hardy
b0036119 18383 0.2 0.0 24124 5100 pts/22 SNs+ 17:31 0:00 bash
b0036119 18401 0.2 0.0 32816 6788 pts/22 TN 17:32 0:00 python3
b0036119 18481 0.0 0.0 18692 1380 pts/8 RN+ 17:32 0:00 ps u
b0036119 20011 0.2 0.0 27412 1984 tty1 SN+ Jun28 12:55 top
b0036119 29956 0.0 0.0 26356 4800 tty1 S Jun17 0:00 -bash

If you’re feeling really extreme, try ps aux to see every process running on your
machine, including those which weren’t spawned by you directly! Processes are allowed
to spawn other child processes, so this last output will be very long; as I write this I
have 281 processes running on my machine. You can see the parent/child hierarchy of
processes by using pstree; unfortunately the output is too long to include here.

Finally let me mention the free command.

b0036119@caldew:/tmp$ free -h
total used free shared buffers cached

Mem: 7.7G 7.1G 657M 842M 711M 2.7G
-/+ buffers/cache: 3.7G 4.0G
Swap: 14G 383M 14G

It reports how much memory is being used by the applications on my machine. The
key number is the second number under ‘free’: 4.0G in this case. I have 4 Gigabytes of
RAM to play with before things will start to get sluggish.

The ‘swap’ refers to an area of hard disk used as ‘overflow RAM’. If I run out of
memory, the kernel will start to swap unused bits of RAM onto the disk leaving more

56

memory for me to play with. Unfortunately, hard disks are significantly slower than
RAM for data access and storage, so we don’t want to use swap memory unless we have
to. (Windows has a similar system called the ‘pagefile’.)

Exercise. Use top, ps, or pstree to investigate the processes running on your ma-
chine. Which do you recognise? Which do you not recognise but sound important?
Which is using the most CPU power, and which is using the most memory? Which
has been running the longest/shortest?

5.2.1 Terminating rogue processes

Every process has an ID number which allows it to be uniquely identified—this is the
PID column in the output of top and ps. For instance, the first program started by the
kernel is init and conventionally has process ID (PID) number 1. init is responsible
for starting and stopping other processes, which is why it sits at the root of the pstree.

You can use the ominous-sounding kill command to send signals to processes using
their process ID. (We’ve previously used kill with the %n notation to refer to job n.)

b0036119@caldew:˜$ ps
PID TTY TIME CMD

13462 pts/8 00:00:00 bash
18852 pts/8 00:00:00 sleep
18862 pts/8 00:00:00 ps
b0036119@caldew:˜$ jobs -l
[1]+ 18852 Running sleep 100000 &
b0036119@caldew:˜$ kill 18852
b0036119@caldew:˜$ jobs
[1]+ Terminated sleep 100000
b0036119@caldew:˜$ ps

PID TTY TIME CMD
13462 pts/8 00:00:00 bash
18868 pts/8 00:00:00 ps

The default signal that gets sent is SIGTERM, which politely asks the program to stop
what it’s doing. There are less polite ways to do this that can’t be ignored by the target
process, but I’ll let you read man pages to find out more about that.

Exercise. Run all the python scripts in the demo/programs folder. Terminate
those which take longer than a minute to run.

I’ll quickly mention the killall command, which allows you to kill commands by
name (and other things).

6 Summary
Hopefully this document should have given you a rough idea of:

• What Linux is, a little bit of its history and why it’s a useful tool;

• How to get around one of its graphical desktops;

57

• Using a command-line interface as a means to interact with a computer;

• Tips and tricks to use commands in a terminal more efficiently;

• How to automate the boring stuff that needs to be done repeatedly; and

• How to manage your multitasking with process control.

Any comments, complaints, corrections or queries are very welcome. Send them to
d.m.robertson@ncl.ac.uk.

∗ ∗ ∗

58

Unix/Linux Command Reference
.com

File Commands
ls – directory listing
ls -al – formatted listing with hidden files
cd dir - change directory to dir
cd – change to home
pwd – show current directory
mkdir dir – create a directory dir
rm file – delete file
rm -r dir – delete directory dir
rm -f file – force remove file
rm -rf dir – force remove directory dir *
cp file1 file2 – copy file1 to file2
cp -r dir1 dir2 – copy dir1 to dir2; create dir2 if it
doesn't exist
mv file1 file2 – rename or move file1 to file2
if file2 is an existing directory, moves file1 into
directory file2
ln -s file link – create symbolic link link to file
touch file – create or update file
cat > file – places standard input into file
more file – output the contents of file
head file – output the first 10 lines of file
tail file – output the last 10 lines of file
tail -f file – output the contents of file as it
grows, starting with the last 10 lines

Process Management
ps – display your currently active processes
top – display all running processes
kill pid – kill process id pid
killall proc – kill all processes named proc *
bg – lists stopped or background jobs; resume a
stopped job in the background
fg – brings the most recent job to foreground
fg n – brings job n to the foreground

File Permissions
chmod octal file – change the permissions of file
to octal, which can be found separately for user,
group, and world by adding:

● 4 – read (r)
● 2 – write (w)
● 1 – execute (x)

Examples:
chmod 777 – read, write, execute for all
chmod 755 – rwx for owner, rx for group and world
For more options, see man chmod.

SSH
ssh user@host – connect to host as user
ssh -p port user@host – connect to host on port
port as user
ssh-copy-id user@host – add your key to host for
user to enable a keyed or passwordless login

Searching
grep pattern files – search for pattern in files
grep -r pattern dir – search recursively for
pattern in dir
command | grep pattern – search for pattern in the
output of command
locate file – find all instances of file

System Info
date – show the current date and time
cal – show this month's calendar
uptime – show current uptime
w – display who is online
whoami – who you are logged in as
finger user – display information about user
uname -a – show kernel information
cat /proc/cpuinfo – cpu information
cat /proc/meminfo – memory information
man command – show the manual for command
df – show disk usage
du – show directory space usage
free – show memory and swap usage
whereis app – show possible locations of app
which app – show which app will be run by default

Compression
tar cf file.tar files – create a tar named
file.tar containing files
tar xf file.tar – extract the files from file.tar
tar czf file.tar.gz files – create a tar with
Gzip compression
tar xzf file.tar.gz – extract a tar using Gzip
tar cjf file.tar.bz2 – create a tar with Bzip2
compression
tar xjf file.tar.bz2 – extract a tar using Bzip2
gzip file – compresses file and renames it to
file.gz
gzip -d file.gz – decompresses file.gz back to
file

Network
ping host – ping host and output results
whois domain – get whois information for domain
dig domain – get DNS information for domain
dig -x host – reverse lookup host
wget file – download file
wget -c file – continue a stopped download

Installation
Install from source:
./configure
make
make install
dpkg -i pkg.deb – install a package (Debian)
rpm -Uvh pkg.rpm – install a package (RPM)

Shortcuts
Ctrl+C – halts the current command
Ctrl+Z – stops the current command, resume with
fg in the foreground or bg in the background
Ctrl+D – log out of current session, similar to exit
Ctrl+W – erases one word in the current line
Ctrl+U – erases the whole line
Ctrl+R – type to bring up a recent command
!! - repeats the last command
exit – log out of current session

* use with extreme caution.

	What is Linux, anyway?
	What's in it for me?
	About this document

	Using a graphical interface
	Fedora: GNOME shell
	Ubuntu: GNOME classic desktop

	Getting used to the terminal
	Navigation
	General command-line advice
	Getting help
	Quitting a command and exiting the terminal.

	File handling
	Creation
	Reading and writing files
	Only for the brave: nano, vim and emacs
	Moving, copying and deleting
	Running your own programs

	The filesystem
	Links
	Disk usage

	More advanced terminal trickery
	Searching and replacing
	Searching for files and folders
	Searching within files
	Replacing within files

	Pipelines
	Streams
	Pipes
	Redirecting output to file

	Other useful shell functions
	Boolean && operator
	The clear command
	Aliases

	Automation
	Scheduling commands
	Specifying the runtime

	Shell scripting
	Substitution
	Handling arguments
	Conditionals
	Loops

	Further reading

	Process control
	Monitoring
	Terminating rogue processes

