
Conjugacy in Higman-Thompson groups

David Robertson

15th April, 2015

With special bonus hyperlinks!

http://en.wikipedia.org/wiki/Hyperlink

Crash course on groups

I Group: set with a nice binary operation
I Z, R, C with addition
I non zero reals, invertible matrices with multiplication
I invertible maps f : X → X with function composition

I ‘Nice’: operation has identity e and inverses x−1

I ex = xe = x e.g. 0, 1, x ↦→ x
I xx−1 = x−1x = e e.g. −x , 1/x , f (x) ↦→ x
I x(yz) = (xy)z

I Used (e.g.) to describe/measure symmetry

Images from Wikipedia

http://en.wikipedia.org/wiki/Wallpaper_group

Crash course on groups

I Group: set with a nice binary operation
I Z, R, C with addition
I non zero reals, invertible matrices with multiplication
I invertible maps f : X → X with function composition

I ‘Nice’: operation has identity e and inverses x−1

I ex = xe = x e.g. 0, 1, x ↦→ x
I xx−1 = x−1x = e e.g. −x , 1/x , f (x) ↦→ x
I x(yz) = (xy)z

I Used (e.g.) to describe/measure symmetry

Images from Wikipedia

http://en.wikipedia.org/wiki/Wallpaper_group

Crash course on groups

I Group: set with a nice binary operation
I Z, R, C with addition
I non zero reals, invertible matrices with multiplication
I invertible maps f : X → X with function composition

I ‘Nice’: operation has identity e and inverses x−1

I ex = xe = x e.g. 0, 1, x ↦→ x
I xx−1 = x−1x = e e.g. −x , 1/x , f (x) ↦→ x
I x(yz) = (xy)z

I Used (e.g.) to describe/measure symmetry

Images from Wikipedia

http://en.wikipedia.org/wiki/Wallpaper_group

Crash course on groups

I Group: set with a nice binary operation
I Z, R, C with addition
I non zero reals, invertible matrices with multiplication
I invertible maps f : X → X with function composition

I ‘Nice’: operation has identity e and inverses x−1

I ex = xe = x e.g. 0, 1, x ↦→ x
I xx−1 = x−1x = e e.g. −x , 1/x , f (x) ↦→ x
I x(yz) = (xy)z

I Used (e.g.) to describe/measure symmetry

Images from Wikipedia

http://en.wikipedia.org/wiki/Wallpaper_group

Crash course on groups

I Group: set with a nice binary operation
I Z, R, C with addition
I non zero reals, invertible matrices with multiplication
I invertible maps f : X → X with function composition

I ‘Nice’: operation has identity e and inverses x−1

I ex = xe = x e.g. 0, 1, x ↦→ x
I xx−1 = x−1x = e e.g. −x , 1/x , f (x) ↦→ x
I x(yz) = (xy)z

I Used (e.g.) to describe/measure symmetry

Images from Wikipedia

http://en.wikipedia.org/wiki/Wallpaper_group

The conjugacy problem

Given a group G and elements x , y can you find a conjugator z?

z−1xz = y

I This problem is undecidable (P. Novikov, 1954)
I Can’t write a single program which correctly answers “Yes” or

“No” in finite time for every group G .
I Cryptosystem?
I Can do this for specific groups, i.e. with G fixed.

The conjugacy problem

Given a group G and elements x , y can you find a conjugator z?

z−1xz = y

I This problem is undecidable (P. Novikov, 1954)
I Can’t write a single program which correctly answers “Yes” or

“No” in finite time for every group G .

I Cryptosystem?
I Can do this for specific groups, i.e. with G fixed.

The conjugacy problem

Given a group G and elements x , y can you find a conjugator z?

z−1xz = y

I This problem is undecidable (P. Novikov, 1954)
I Can’t write a single program which correctly answers “Yes” or

“No” in finite time for every group G .
I Cryptosystem?
I Can do this for specific groups, i.e. with G fixed.

A recipe for F

I Take the interval [0, 1].

I Chop it in half.
I If you like, chop some of the

halves in half.
I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.

I If you like, chop some of the
halves in half.

I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.
I If you like, chop some of the

halves in half.

I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.
I If you like, chop some of the

halves in half.
I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.
I If you like, chop some of the

halves in half.
I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.
I If you like, chop some of the

halves in half.
I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

A recipe for F

I Take the interval [0, 1].
I Chop it in half.
I If you like, chop some of the

halves in half.
I Continue until you get bored.

I Do the same to a second
copy of [0, 1]. Same number
of chops!

I Use the intervals as axes and
join the dots.

0 1
0

1

f

Functions f like this
are the elements of

Thompson’s group F .

Thompson’s other groups T and V

F

< T < V

0 1
0

1

F : increasing
functions

0 1
0

1

T : don’t have to start
at (0, 0)

0 1
0

1

V : don’t have to be
continuous

Thompson’s other groups T and V

F < T

< V

0 1
0

1

F : increasing
functions

0 1
0

1

T : don’t have to start
at (0, 0)

0 1
0

1

V : don’t have to be
continuous

Thompson’s other groups T and V

F < T < V

0 1
0

1

F : increasing
functions

0 1
0

1

T : don’t have to start
at (0, 0)

0 1
0

1

V : don’t have to be
continuous

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)
I Finitely Presented: described by finitely many equations.
I Simple: can’t ‘compress’ the group to get a smaller one.

V contains a copy of every finite group G :
I G →˓ 𝒮n →˓ 𝒮2m

I Chop interval into halves, quarters, eights, . . . , 2mths.
I Realise 𝜎 ∈ 𝒮2m as a permutation of the subintervals.

People are also interested in whether F is amenable or not,
whatever that means. . .

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)
I Finitely Presented: described by finitely many equations.
I Simple: can’t ‘compress’ the group to get a smaller one.

V contains a copy of every finite group G :
I G →˓ 𝒮n →˓ 𝒮2m

I Chop interval into halves, quarters, eights, . . . , 2mths.
I Realise 𝜎 ∈ 𝒮2m as a permutation of the subintervals.

People are also interested in whether F is amenable or not,
whatever that means. . .

People find these groups interesting

T and V are finitely presented, infinite simple groups (rare!)
I Finitely Presented: described by finitely many equations.
I Simple: can’t ‘compress’ the group to get a smaller one.

V contains a copy of every finite group G :
I G →˓ 𝒮n →˓ 𝒮2m

I Chop interval into halves, quarters, eights, . . . , 2mths.
I Realise 𝜎 ∈ 𝒮2m as a permutation of the subintervals.

People are also interested in whether F is amenable or not,
whatever that means. . .

Conjugacy algorithms in V

1974 Higman described an algorithm solving the conjugacy problem.
I Works for V = G2,1 and generalisations Gn,r .

I Different tools used to address conjugacy since:
1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman’s ideas to solve power conjugacy in V .

Given x , y can you solve z−1xaz = yb?

2015 Barker, Duncan and R. Generalisation to Gn,r and corrections.
Proof of concept implementation.

http://www.math.vanderbilt.edu/~msapir/ftp/pub/diagramgroups/dg.pdf
http://arxiv.org/abs/0708.4250
http://www.worldscientific.com/doi/abs/10.1142/S0218196710005534
http://arxiv.org/abs/1107.0672
http://thompsons-v.readthedocs.org/en/master/

Conjugacy algorithms in V

1974 Higman described an algorithm solving the conjugacy problem.
I Works for V = G2,1 and generalisations Gn,r .
I Different tools used to address conjugacy since:

1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman’s ideas to solve power conjugacy in V .

Given x , y can you solve z−1xaz = yb?

2015 Barker, Duncan and R. Generalisation to Gn,r and corrections.
Proof of concept implementation.

http://www.math.vanderbilt.edu/~msapir/ftp/pub/diagramgroups/dg.pdf
http://arxiv.org/abs/0708.4250
http://www.worldscientific.com/doi/abs/10.1142/S0218196710005534
http://arxiv.org/abs/1107.0672
http://thompsons-v.readthedocs.org/en/master/

Conjugacy algorithms in V

1974 Higman described an algorithm solving the conjugacy problem.
I Works for V = G2,1 and generalisations Gn,r .
I Different tools used to address conjugacy since:

1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman’s ideas to solve power conjugacy in V .

Given x , y can you solve z−1xaz = yb?

2015 Barker, Duncan and R. Generalisation to Gn,r and corrections.
Proof of concept implementation.

http://www.math.vanderbilt.edu/~msapir/ftp/pub/diagramgroups/dg.pdf
http://arxiv.org/abs/0708.4250
http://www.worldscientific.com/doi/abs/10.1142/S0218196710005534
http://arxiv.org/abs/1107.0672
http://thompsons-v.readthedocs.org/en/master/

Conjugacy algorithms in V

1974 Higman described an algorithm solving the conjugacy problem.
I Works for V = G2,1 and generalisations Gn,r .
I Different tools used to address conjugacy since:

1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman’s ideas to solve power conjugacy in V .

Given x , y can you solve z−1xaz = yb?

2015 Barker, Duncan and R. Generalisation to Gn,r and corrections.
Proof of concept implementation.

http://www.math.vanderbilt.edu/~msapir/ftp/pub/diagramgroups/dg.pdf
http://arxiv.org/abs/0708.4250
http://www.worldscientific.com/doi/abs/10.1142/S0218196710005534
http://arxiv.org/abs/1107.0672
http://thompsons-v.readthedocs.org/en/master/

Conjugacy algorithms in V

1974 Higman described an algorithm solving the conjugacy problem.
I Works for V = G2,1 and generalisations Gn,r .
I Different tools used to address conjugacy since:

1997 Guba, Sapir: diagram groups
2007 Belk, Matucci: strand diagrams
2010 Salazar-Díaz: revealing tree pairs
2011 Bleak et al.: train tracks and flow graphs

2014 Barker used Higman’s ideas to solve power conjugacy in V .

Given x , y can you solve z−1xaz = yb?

2015 Barker, Duncan and R. Generalisation to Gn,r and corrections.
Proof of concept implementation.

http://www.math.vanderbilt.edu/~msapir/ftp/pub/diagramgroups/dg.pdf
http://arxiv.org/abs/0708.4250
http://www.worldscientific.com/doi/abs/10.1142/S0218196710005534
http://arxiv.org/abs/1107.0672
http://thompsons-v.readthedocs.org/en/master/

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Interval partitions → trees

0 1
0

1

How can we store this in memory?

[0, 1]

[0, 1/2]

[0, 1/4] [1/4, 1/2]

[1/2, 1]

[1/2, 3/4] [3/4, 1]

[0, 1]

[0, 1/2] [1/2, 1]

[1/2, 3/4] [3/4, 1]

[3/4, 7/8] [7/8, 1]

Trees → paths and words

I Trees aren’t always easy to work with
I Can only tell if you’re at the top (root) or bottom (leaf)
I Recursively delegate to children

I Quickly becomes confusing! for me, at least. . .

I Where does f send [34/128, 35/128]?

Higman described paths in the tree using an algebra. Introduce
labels:

Root ↦→ x left ↦→ 𝛼1 right ↦→ 𝛼2

Trees → paths and words

I Trees aren’t always easy to work with
I Can only tell if you’re at the top (root) or bottom (leaf)
I Recursively delegate to children
I Quickly becomes confusing! for me, at least. . .

I Where does f send [34/128, 35/128]?

Higman described paths in the tree using an algebra. Introduce
labels:

Root ↦→ x left ↦→ 𝛼1 right ↦→ 𝛼2

Trees → paths and words

I Trees aren’t always easy to work with
I Can only tell if you’re at the top (root) or bottom (leaf)
I Recursively delegate to children
I Quickly becomes confusing! for me, at least. . .

I Where does f send [34/128, 35/128]?

Higman described paths in the tree using an algebra. Introduce
labels:

Root ↦→ x left ↦→ 𝛼1 right ↦→ 𝛼2

Trees → paths and words

0 1
0

1
x

x𝛼2
1 x𝛼1𝛼2 x𝛼2𝛼1 x𝛼2

2

x

x𝛼1

x𝛼2𝛼1

x𝛼2
2𝛼1 x𝛼3

2

Maps specified by lists of domain and range words.

x𝛼2
1 ↦→ x𝛼1 x𝛼2𝛼1 ↦→ x𝛼2

2𝛼1
x𝛼1𝛼2 ↦→ x𝛼2𝛼1 x𝛼2

2 ↦→ x𝛼3
2

Easier to describe repeated application, e.g.

x𝛼2
2 ↦→ x𝛼3

2 ↦→ x𝛼4
2 ↦→ . . .

[3/4, 1] ↦→ [7/8, 1] ↦→ [15/16, 1] ↦→ . . .

Trees → paths and words

0 1
0

1
x

x𝛼2
1 x𝛼1𝛼2 x𝛼2𝛼1 x𝛼2

2

x

x𝛼1

x𝛼2𝛼1

x𝛼2
2𝛼1 x𝛼3

2

Maps specified by lists of domain and range words.

x𝛼2
1 ↦→ x𝛼1 x𝛼2𝛼1 ↦→ x𝛼2

2𝛼1
x𝛼1𝛼2 ↦→ x𝛼2𝛼1 x𝛼2

2 ↦→ x𝛼3
2

Easier to describe repeated application, e.g.

x𝛼2
2 ↦→ x𝛼3

2 ↦→ x𝛼4
2 ↦→ . . .

[3/4, 1] ↦→ [7/8, 1] ↦→ [15/16, 1] ↦→ . . .

Trees → paths and words

0 1
0

1
x

x𝛼2
1 x𝛼1𝛼2 x𝛼2𝛼1 x𝛼2

2

x

x𝛼1

x𝛼2𝛼1

x𝛼2
2𝛼1 x𝛼3

2

Maps specified by lists of domain and range words.

x𝛼2
1 ↦→ x𝛼1 x𝛼2𝛼1 ↦→ x𝛼2

2𝛼1
x𝛼1𝛼2 ↦→ x𝛼2𝛼1 x𝛼2

2 ↦→ x𝛼3
2

Easier to describe repeated application, e.g.

x𝛼2
2 ↦→ x𝛼3

2 ↦→ x𝛼4
2 ↦→ . . .

[3/4, 1] ↦→ [7/8, 1] ↦→ [15/16, 1] ↦→ . . .

Trees → paths and words

0 1
0

1
x

x𝛼2
1 x𝛼1𝛼2 x𝛼2𝛼1 x𝛼2

2

x

x𝛼1

x𝛼2𝛼1

x𝛼2
2𝛼1 x𝛼3

2

Maps specified by lists of domain and range words.

x𝛼2
1 ↦→ x𝛼1 x𝛼2𝛼1 ↦→ x𝛼2

2𝛼1
x𝛼1𝛼2 ↦→ x𝛼2𝛼1 x𝛼2

2 ↦→ x𝛼3
2

Easier to describe repeated application, e.g.

x𝛼2
2 ↦→ x𝛼3

2 ↦→ x𝛼4
2 ↦→ . . .

[3/4, 1] ↦→ [7/8, 1] ↦→ [15/16, 1] ↦→ . . .

Components (≈ orbits)

I Pick your favourite word e.g. w = x𝛼2
1 ↔ [0, 1/4].

I Compute component of w until you can’t any more:

. . . , f −2(w), f −1(w), w , f (w), f 2(w), . . .

Components come in five different shapes:

Components (≈ orbits)

I Pick your favourite word e.g. w = x𝛼2
1 ↔ [0, 1/4].

I Compute component of w until you can’t any more:

. . . , f −2(w), f −1(w), w , f (w), f 2(w), . . .

Components come in five different shapes:

Components and Conjugacy

1. Break down a map f ∈ V into components.

2. If g ∈ V is conjugate to f , the components of g must match
the components of f .

e.g. periodic ↦→ periodic, with the same period

3. Only finitely many matchings—check them all!

4. If one works: we get a conjugator h.

5. If none of them work: no conjugator exists.

Components and Conjugacy

1. Break down a map f ∈ V into components.

2. If g ∈ V is conjugate to f , the components of g must match
the components of f .

e.g. periodic ↦→ periodic, with the same period

3. Only finitely many matchings—check them all!

4. If one works: we get a conjugator h.

5. If none of them work: no conjugator exists.

Components and Conjugacy

1. Break down a map f ∈ V into components.

2. If g ∈ V is conjugate to f , the components of g must match
the components of f .

e.g. periodic ↦→ periodic, with the same period

3. Only finitely many matchings—check them all!

4. If one works: we get a conjugator h.

5. If none of them work: no conjugator exists.

Components and Conjugacy

1. Break down a map f ∈ V into components.

2. If g ∈ V is conjugate to f , the components of g must match
the components of f .

e.g. periodic ↦→ periodic, with the same period

3. Only finitely many matchings—check them all!

4. If one works: we get a conjugator h.

5. If none of them work: no conjugator exists.

Components and Conjugacy

1. Break down a map f ∈ V into components.

2. If g ∈ V is conjugate to f , the components of g must match
the components of f .

e.g. periodic ↦→ periodic, with the same period

3. Only finitely many matchings—check them all!

4. If one works: we get a conjugator h.

5. If none of them work: no conjugator exists.

Implementation

I My job: get a computer to do this.
I Like programming a fancy calculator!
I Written in Python: something I knew and quick to work with.

I Summer project that was more like a semester project. . .
I Other tools exist to do calculations in V , but not to solve the

conjugacy problem.

Code is on GitHub. Come and find me if you want a demo!

https://www.python.org/
http://www.math.tamu.edu/~romwell/nvTrees/
https://github.com/DMRobertson/thompsons_v

Implementation

I My job: get a computer to do this.
I Like programming a fancy calculator!
I Written in Python: something I knew and quick to work with.
I Summer project that was more like a semester project. . .

I Other tools exist to do calculations in V , but not to solve the
conjugacy problem.

Code is on GitHub. Come and find me if you want a demo!

https://www.python.org/
http://www.math.tamu.edu/~romwell/nvTrees/
https://github.com/DMRobertson/thompsons_v

Implementation

I My job: get a computer to do this.
I Like programming a fancy calculator!
I Written in Python: something I knew and quick to work with.
I Summer project that was more like a semester project. . .
I Other tools exist to do calculations in V , but not to solve the

conjugacy problem.

Code is on GitHub. Come and find me if you want a demo!

https://www.python.org/
http://www.math.tamu.edu/~romwell/nvTrees/
https://github.com/DMRobertson/thompsons_v

Sphinx: comments in source code

def format(word):
"""Turns a sequence of integers representing a ∗word∗ into [...]

>>> format([2, −1, 2, −2, 0])
'x2 a1 x2 a2 L'
>>> format([])
The Spanish Inquisition

"""
if len(word) == 0:

return "<the empty word>"
return " ".join(_char(i) for i in word)

Sphinx generates nice HTML documentation and runs tests based on
"""comments like this""".

http://sphinx-doc.org/
http://thompsons-v.readthedocs.org/en/master/thompson.word.html#thompson.word.format

Sphinx: doctest

H:\thompsons_v\docs>make doctest
[...]
**
File "thompson.word.rst", line 10, in default
Failed example:

format([])
Expected:

The Spanish Inquisition
Got:

‘<the empty word>’

1 items had failures:

1 of 100 in default
100 tests in 1 items.
99 passed and 1 failed.
Test Failed 1 failures.

http://sphinx-doc.org/

Other lessons learned

I Small test suites—catch bugs before they happen
I Generate random examples
I Immutable words
I Document the code

http://thompsons-v.readthedocs.org
https://github.com/DMRobertson/thompsons_v

Future Work

Code
I More testing
I Complexity analysis

Theory
I Simultaneous conjugacy

Given x1, . . . , xn; y1, . . . , yn find a single conjugator z such that

z−1xiz = yi , ∀i

I Try to solve different kinds of equations?
I Transfer to more general Thompson-like groups V (Σ)?

	Background
	Thompson's groups
	Conjugacy algorithms
	Implementation

