
Research project description

My research project culminated in a thesis entitled Conjugacy and centralisers in Thomp-
son’s group T . In this short, nontechnical essay I’ll describe what this title actually means,
the problems I encountered and how I went about solving them.

What’s a group? Why do people care about them?

A group is a mathematical gadget which describes the types of symmetry an object
possesses. One good example comes from 2D shapes. A square can be rotated about itself
only through 90◦, 180◦, 270◦ or 360◦ angles. This is different from a circle, which can be
rotated through absolutely any angle from 0◦ to 360◦! Mathematically, we recognise this
by assigning two different symmetry groups to the square and the circle.

There are lots of things which can reasonably be called a symmetry. Other geometric
examples include translation and reflections (perhaps even in 3D), but there’s a whole zoo
out there of things that mathematicians call ‘symmetry’. As far as maths is concerned,
the idea is very abstract: all we need is a consistent way to combine symmetries. Thinking
back to the square, we could combine a 90◦ rotation with a 180◦ rotation to get a 270◦

rotation.
Why bother studying symmetry and groups? I think of it chiefly as a time-saver. If

we want to study an object X in detail, there may be lots of possibilities or cases to
worry about. If X has lots of symmetry, there’s a good chance that many of those cases
will overlap, being duplicates of each other. Then we only need to reason about the
essential cases: we know that all the rest will follow on, thanks to our understanding
of symmetry. So we can save time by reducing to the important bits of an argument.
My favourite example of this is the article “There Is No 16-Clue Sudoku”.1 They use
symmetry arguments to shorten a computer search for solvable Sudoku grids by a factor
of 1.2 trillion!

Sometimes though, the symmetries of an object—all bundled together in one of these
‘groups’—are worth studying in their own right. One example comes from chemistry,
where the symmetries of a molecule or a crystal structure can give clues as to its chemical
properties. Another more abstract mathematical example uses symmetries as a tool.
Imagine it’s hard to distinguish between two mysterious objects. If we could show that
the objects have different symmetries (different symmetry groups), we can conclude that
our objects must be different.

One final application of group theory is to cryptography—encrypting and decrypting
communications. Modern cryptography relies on hard problems which become easy when
we possess some extra secret information. Very roughly speaking, a computer would have
to take ages to solve a hard problem, but hardly any time to solve an easy problem. Group
theory is a source of computational problems whose difficulty can be quantified. This
means that we have a good numerical estimate of how long it’ll take the computer to solve
the problem, and so we can get an idea of how hard these problems are. The hope is that
in studying groups, we might find new problems which are suitable for cryptography. For
example, the problem at the heart of the Diffie–Hellman key exchange protocol—discrete
logs—can be formulated for any group.

1Gary McGuire, Bastian Tugemann, Gilles Civario. Experimental Mathematics 2014 23:2, pp 190–217.
See their section 3 in particular.

1



What does the rest of your jargon mean?

My thesis studies one particular group called ‘Thompson’s group T ’. This group is a
collection of unusual symmetries of a circle, wherein some parts of the circle are stretched
and others are squashed. (Think of pulling apart two close points on an elastic band.)
It’s best known to other group theorists as a source of unusual examples. Indeed, T and
its relatives are infamous groups for which many reasonable questions are hard to tackle.

‘Conjugacy’ is the idea that two different symmetries can look like the same when
viewed in the right way. If so, the two different symmetries are called conjugate. It’s a bit
like an optical illusion: two objects that look different at first glance are revealed to be
the same—from the right point of view. In the images below, square A looks darker than
square B. However, both squares are exactly the same colour; our brains are tricked into
thinking otherwise thanks to the shadow over B.

Images: Wikipedia article for ‘Optical illusion’, licensed for free use.

My job was to solve the conjugacy search problem in Thompson’s group T . This
means I had to design an algorithm to decide if two given symmetries were conjugate. If
so, the algorithm had to explain why—which is harder. Put differently, the algorithm
had to produce evidence that the two symmetries were conjugate. To make an analogy
with the coloured squares above, the algorithm would have to perform the equivalent of
adding the grey strip between A and B in the right-hand image. On top of that, I needed
to produce a formal, mathematical proof that the algorithm does what it claims to do.

The last bit of jargon is a ‘centraliser’. I mentioned earlier that in a group we have a
way to combine symmetries. We use multiplication to denote this, so that combining a
and b results in a×b. Crucially, the order of combining matters: it may be that a×b is not
the same as b× a! Centralisers are another group theory gadget for measuring how often
this occurs. When centralisers are large, we find a× b = b× a is true most of the time.
Conversely, small centralisers mean that a× b = b× a only very rarely; in this situation
the group is more complicated. I went on to study these gadgets for Thompson’s group T ,
because centralisers can be used to ‘count’ the number of ways in which two symmetries
are conjugate. Put differently: centralisers allow us to find all pieces of evidence that two
symmetries are conjugate, instead of just one or two pieces.

What did you do, and how?

The Thompson groups are fascinating, but are a pain to work with by hand. Each element
(i.e. each symmetry) can be represented in an infinite number of ways, and it’s tricky to

2



choose the right representation for the job. Worse still, calculating with elements is tedious
and error-prone. To get started, I wrote a series of Python scripts to help automate these
calculations, giving me the chance to learn about the groups while doing so.

My initial goal was to implement an algorithm described in a draft paper. I did so in
Python, because I was familiar with the language, and because it’s well-suited for rapid
prototyping. To start, I established a way of representing group elements in memory. I
made use of object-oriented programming to keep things organised. As the software grew
more complex, I used tools for documentation, version control and testing. The tests were
quick to run, yet functional enough to catch bugs before I discovered them!

With data structures in hand, I began to implement the algorithm as described in
the draft paper. Surprisingly, the paper had an error, which boiled down to a gap in an
argument going back to the 70s. Fortunately, this wasn’t a complete disaster: I was able
to work around the gap by storing some extra data and by adding a few extra steps to
the algorithm. My contribution was recorded in the draft article, later published in 2016.

Officially, my project was to solve the ‘simultaneous conjugacy problem’ in Thompson’s
group V . This is a harder problem than just the conjugacy problem, and V is larger
and more complicated than T . I spent a lot of time reading the literature on this, but
eventually I found myself stuck and getting nowhere fast. One difficulty was understanding
how different V -centralisers interacted—almost anything could happen here. Another
difficulty came from the difficulty of working with the non-unique data structures that
describe conjugacy in V . I wrote some experimental scripts to develop a heuristic approach,
but these weren’t robust enough to make a formal algorithm.

Instead, I re-read the thesis of F. Matucci, whose work includes the T Thompson
group mentioned earlier. To adapt Matucci’s algorithms to work in the T group, I had to
learn new mathematics. This enabled me to consistently describe and work with points
on a circle, even when that circle is being stretched and squashed. With some effort, a
case-by-case analysis and a number of small details to be checked, I was able to extend
and adapt Matucci’s techniques to solve the conjugacy problem in T .

In the group theoretical world, conjugacy and centralisers go hand-in-hand. Mattuci
had found the ‘ingredients’ to describe centralisers in T , but he was not able to provide
the recipe for combining them to form a fully-fledged centraliser. I found an example
element whose recipe I could deduce, and suspected this was part of a larger pattern. I
began another case-by-case analysis to try and describe this pattern, starting by working
out what parameters influenced the centraliser I was seeking.

Alongside my work I was continuing to develop and maintain my Python package.
Here my software was invaluable. I was able to quickly validate or refine my approach,
by having the computer perform concrete calculations in order to test my theoretical
calculations. This gave me the confidence to continue, and ultimately conclude my thesis
with a classification of certain centralisers in T .

The end product

My initial software and fix to the ‘gap’ forms part of Barker, Duncan and Robertson,
2016; see my CV. The software I wrote is available online,2 and my submitted thesis is
unofficially available online too.3 I am working on presenting the thesis’s main results in
two standalone articles.

2https://github.com/DMRobertson/thompsons_v
3https://www.mas.ncl.ac.uk/~b0036119/thesis_submitted.pdf

3

https://github.com/DMRobertson/thompsons_v
https://www.mas.ncl.ac.uk/~b0036119/thesis_submitted.pdf

