A spotter's guide to fractals

What, Why and How

David Robertson Wednesday 16th November 2016

WHAT: real world examples

Clouds are not spheres

Mountains are not cones

Coastlines are not circles

Bark is not smooth

Lightning doesn't travel in a straight line

Loads of real-life systems look rough or noisy; can we quantify, model or simulate this?

Might want a differentiable (smooth) curve

Might want a differentiable (smooth) curve

$$f: [0, 1] \to \mathbb{R}^2$$
$$t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

• Pain to write down

Might want a differentiable (smooth) curve

$$f: [0,1] \to \mathbb{R}^2$$
$$t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- Pain to write down
- Doesn't capture
 "pointyness"

Might want a differentiable (smooth) curve

- Pain to write down
- Doesn't capture
 "pointyness"

in

• Even more detail to describe when zoomed

Might want a differentiable (smooth) curve

$$t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

- Pain to write down
- Doesn't capture
 "pointyness"
- Even more detail to describe when zoomed

feather

feather

bone

feather

bone

egg

Micro Meso Macro

Micro	Meso	Macro
Quantum	Classical	General Relativity

Micro	Meso	Macro
Quantum	Classical	General Relativity
Observation	Sample	Population

Micro	Meso	Macro
Quantum	Classical	General Relativity
Observation	Sample	Population
Time series	Moving average	Trend

Geometric object

Geometric object Self-similar

Geometric object Self-similar

exactly approximately statistically

Geometric object Self-similar

exactly approximately statistically

Detailed at all scales

WHAT: Mathematical description

Definition (Mandelbrot)

A **fractal** is a subset $X \subseteq \mathbb{R}^n$ whose Hausdorff dimension is strictly larger than its Topolgical dimension.

This relies upon a definition of **dimension**.

Definition (Mandelbrot)

A **fractal** is a subset $X \subseteq \mathbb{R}^n$ whose Hausdorff dimension is strictly larger than its Topolgical dimension.

This relies upon a definition of **dimension**.

Specifying "dimension" turns out to be tricky...

• Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.

- Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.
- Each point x: count the number $N_{S}(x)$ of T_{i} containing x.

- Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.
- Each point x: count the number $N_S(x)$ of T_i containing x.
- Maximum such number N_S is the **order** of the cover.

- Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.
- Each point x: count the number $N_S(x)$ of T_i containing x.
- Maximum such number N_S is the order of the cover.

• **Refine** the cover: break down the S_i into smaller pieces.

- Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.
- Each point x: count the number $N_S(x)$ of T_i containing x.
- Maximum such number N_S is the order of the cover.

- **Refine** the cover: break down the S_i into smaller pieces.
- $\exists N$: any cover can be refined to have order $\leq N$.
Topological dimension

- Cover of X: a list of open sets S_i with $X = S_1 \cup \cdots \cup S_n$.
- Each point x: count the number $N_S(x)$ of T_i containing x.
- Maximum such number N_S is the **order** of the cover.

- **Refine** the cover: break down the S_i into smaller pieces.
- $\exists N$: any cover can be refined to have order $\leq N$.
- The **topological dimension** of X is $\dim_{Top}(X) = N 1$.

Say we're working with $X \subseteq \mathbb{R}^2$ and given some small r > 0.

• How many *r* × *r* squares do you need to cover X?

Say we're working with $X \subseteq \mathbb{R}^2$ and given some small r > 0.

- How many *r* × *r* squares do you need to cover *X*?
- Call the number N(r); compute N(1/1), N(1/2), N(1/3), N(1/4), ...

 $4^2 = 16$

Say we're working with $X \subseteq \mathbb{R}^2$ and given some small r > 0.

- How many *r* × *r* squares do you need to cover *X*?
- Call the number N(r); compute N(1/1), N(1/2), N(1/3), N(1/4), ...
- **Example:** if X = unit square then $N(1/n) = n^2$.

$$1 = 1^2$$
 $2^2 = 4$ $3^3 = 9$

Say we're working with $X \subseteq \mathbb{R}^2$ and given some small r > 0.

- How many $r \times r$ squares do you need to cover X?
- Call the number N(r); compute $N(1/1), N(1/2), N(1/3), N(1/4), \ldots$
- **Example:** if X = unit square then $N(1/n) = n^2$.

 $1 = 1^{2} 2^{2} = 4 3^{3} = 9 4^{2} = 16$ $N = (1/n)^{2} = r^{-2} \iff \log N = -2\log(r)$ $\iff \log N / -\log(r) = 2$

Box-counting dimension

Example: *X* = Great Britain's coastline

Box-counting dimension

Example: *X* = Great Britain's coastline

Dimension defined by dim_{Box}(X) = $\lim_{r \to 0} \frac{N(r)}{-\log(r)} \approx 1.25 \notin \mathbb{Z}$!!.

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

• Nice special case: **similarity dimension** (coming shortly)

The "official" fractal dimension is the Hausdorff dimension

• Nice special case: **similarity dimension** (coming shortly)

There are loads more to choose from. Choose the right tool for the job!

The "official" fractal dimension is the Hausdorff dimension

• Nice special case: **similarity dimension** (coming shortly)

There are loads more to choose from. Choose the right tool for the job!

- information dimension
- correlation dimension
- Assouad dimension
- packing dimension
- ...

HOW: Mathematical models

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

• Initial setup: a line segment

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator
- Do the same to the new subsegments

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

- Need detail at all levels & self-similarity
- To achieve this: often the limit of a recursive construction

- Initial setup: a line segment
- Replace with a scaled & rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

Infinite length

 $(4/3)^n \to \infty$

Infinite length Encloses finite area

$$(4/_3)^n \to \infty$$

Infinite length $(4/3)^n \to \infty$ Encloses finite area Topological dimension 1_____

Infinite length $(4/3)^n \to \infty$ Encloses finite areaTopological dimension1Fractal dimension $\log(4)/\log(3) \approx 1.262$

$K = K_1 \sqcup K_2 \sqcup K_3 \sqcup K_4$

$K = K_1 \sqcup K_2 \sqcup K_3 \sqcup K_4$ Fractal = 4 copies of itself at 1/3 scale

 $K = K_1 \sqcup K_2 \sqcup K_3 \sqcup K_4$ Fractal = 4 copies of itself at 1/3 scale Solve $1/3^d + 1/3^d + 1/3^d + 1/3^d = 1$

 $K = K_1 \sqcup K_2 \sqcup K_3 \sqcup K_4$ Fractal = 4 copies of itself at 1/3 scale Solve $1/3^d + 1/3^d + 1/3^d + 1/3^d = 1$ dim_{Sim} = log 4/log 3

Say our fractal K looks like

$K = K_1 \sqcup K_2 \sqcup \cdots \sqcup K_n$

Say our fractal K looks like

$$K = K_1 \sqcup K_2 \sqcup \cdots \sqcup K_n$$

• Each copy K_i is a scaled copy of K (say at scale $r_i < 1$)

Say our fractal K looks like

$$K = K_1 \sqcup K_2 \sqcup \cdots \sqcup K_n$$

- Each copy K_i is a scaled copy of K
- Solve $r_1^d + \cdots + r_n^d = 1$

(say at scale r_i < 1)
(e.g. numerically)</pre>

Say our fractal K looks like

$$K = K_1 \sqcup K_2 \sqcup \cdots \sqcup K_n$$

- Each copy K_i is a scaled copy of K
- Solve $r_1^d + \cdots + r_n^d = 1$

(say at scale r_i < 1)
(e.g. numerically)</pre>

• dim_{Sim} is the unique solution d

Say our fractal K looks like

$$K = K_1 \sqcup K_2 \sqcup \cdots \sqcup K_n$$

- Each copy K_i is a scaled copy of K
- Solve $r_1^d + \cdots + r_n^d = 1$
- dim_{Sim} is the unique solution d

(say at scale r_i < 1)
(e.g. numerically)</pre>

Webbrowser demo @ caldew:5000

Generalisations: graph replacement

• **Currently:** line segment → smaller segments
- Currently: line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

- **Currently:** line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Cantor set C

Example: Cantor set C

- **Currently:** line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Cantor set C

- **Currently:** line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

 $\dim_{Sim}(C) = \log 2/\log 3 \approx 0.6309 \qquad \dim_{Top}(C) = 0$

- **Currently:** line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

- **Currently:** line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

- Currently: line segment → smaller segments
- Why not: edge in a graph \mapsto subgraph

• **Currently:** line segment → smaller segments

- **Currently:** line segment → smaller segments
- Why not: randomly flip some of these line segments?

- **Currently:** line segment → smaller segments
- Why not: randomly flip some of these line segments?

- **Currently:** line segment → smaller segments
- Why not: randomly flip some of these line segments?

Randomness leads to an entire class of 'stochastic fractals':

- Brownian motion
- Self-avoiding walks/paths

Alternatives: L-systems

Alternatives: Strange attractors

Alternatives: Strange attractors

Alternatives: Escape time fractals

Animation

Alternatives: Escape time fractals

Iterated function system: copy an object to shrunk versions of itself

Stochastic fractals: detail defined by random movement or deformation

L-systems: based on rewriting strings, good for modelling plants

Strange attractors: points in a chaotic systems often get stuck in a fractal set

Escape time fractals: reapply a map and wait until it sends points to a limit or to ∞

WHY: is it just pretty pictures?

• Real world is more fractal than not

- Real world is more fractal than not
- **Procedural generation**: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- Real world is more fractal than not
- **Procedural generation**: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

• "Perlin noise", "diamond-square algorithm"

- Real world is more fractal than not
- **Procedural generation**: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- "Perlin noise", "diamond-square algorithm"
- Used in computer games; visual effects for TV and film
 Star Trek II)

- Real world is more fractal than not
- **Procedural generation**: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- "Perlin noise", "diamond-square algorithm"
- Used in computer games; visual effects for TV and film
 (Star Trek II)
- A base for artists to detail, or for further processing

Source of 'weird' sets

• Pathological examples where intuition fails

Source of 'weird' sets

- Pathological examples where intuition fails
- Weierstrass function: $f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$

Source of 'weird' sets

- Pathological examples where intuition fails
- Weierstrass function: $f(x) = \sum_{n=0}^{\infty} a^n \cos(b^n \pi x)$
- **Space-filling curves:** continuous map $[0, 1] \rightarrow [0, 1]^2$

• Need to walk through a grid with small coordinate changes?

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?
- Need a large surface area in a small space?

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?
- Need a large surface area in a small space?
- Need a systematic way to make a rough surface?

In short, Fractals:

Shapes with built-in self-similarity

Shapes with built-in self-similarity Models often built iteratively

Shapes with built-in self-similarity Models often built iteratively Also arise from dynamical systems Shapes with built-in self-similarity Models often built iteratively Also arise from dynamical systems Aesthetically appear 'more natural' Shapes with built-in self-similarity Models often built iteratively Also arise from dynamical systems Aesthetically appear 'more natural' Pretty pictures!
Flickr photos:

https://www.flickr.com/photos/ + ...

triplea4/15228944302

provoost/2390399208

sonofgroucho/5118887516

qualsiasi/261599589

macsantos/9242974148

28594931@N03/4831814540

107963674@N07/14628897742

bluegreenchair/5615543558

bluegreenchair/5614961945

bluegreenchair/5614962423

distillated/3151042571

Wikimedia images:

https://commons.wikimedia.org/wiki/File: + ...

Bose Einstein condensate.png

NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg

Great_Britain_Box.svg

Cantor_set_in_seven_iterations.svg

Fractal-plant.svg

Lorenz_attractor_yb.svg

Iulia dem c=-0.1+0.651.png

WeierstrassFunction.svg

FractalLandscape.jpg

Fractal terrain texture.jpg

BlueRidgePastures.jpg

Cerebral_lobes.png

Casts of lungs%2C Marco resin%2C 1951 (23966574469).jpg

Evening_London_(15884928867).jpg

Antenna flat panel.png

Others

- Maps from Open Street Map
- The last three aren't Creative Commons or Public domain:
- Description From YouTube's branding guidelines
- Basilica images from Belk, Forrest: *Rearrangement Groups* of *Fractals* @ arXiv:1010.03133
- Fractal sound barrier from

 $\verb+http://www.ipam.ucla.edu/research-articles/fractal-acoustic-barrier+$

• Let FTEX file and source @ GitHub:DMRobertson/fractals

¡Muchas gracias!