A spotter's guide to fractals

What, Why and How

David Robertson
Wednesday $16^{\text {th }}$ November 2016

WHAT: real world examples

Clouds are not spheres

Mountains are not cones

Coastlines are not circles

Bark is not smooth

Lightning doesn't travel in a straight line

Loads of real-life systems look rough or noisy; can we quantify, model or simulate this?

Hard to describe a coastline

Might want a differentiable (smooth) curve

$$
\begin{aligned}
f:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{x(t)}{y(t)}
\end{aligned}
$$

Hard to describe a coastline

Might want a differentiable (smooth) curve

$$
\begin{aligned}
f:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{x(t)}{y(t)}
\end{aligned}
$$

- Pain to write down

Hard to describe a coastline

Might want a differentiable (smooth) curve

$$
\begin{aligned}
f:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{x(t)}{y(t)}
\end{aligned}
$$

- Pain to write down
- Doesn’t capture "pointyness"

Hard to describe a coastline

Might want a differentiable (smooth) curve

$$
\begin{aligned}
f:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{x(t)}{y(t)}
\end{aligned}
$$

- Pain to write down
- Doesn’t capture "pointyness"
- Even more detail to describe when zoomed in

Hard to describe a coastline

Might want a differentiable (smooth) curve

$$
\begin{aligned}
f:[0,1] & \rightarrow \mathbb{R}^{2} \\
t & \mapsto\binom{x(t)}{y(t)}
\end{aligned}
$$

- Pain to write down
- Doesn’t capture "pointyness"
- Even more detail to describe when zoomed in

The world looks different when you change scale

The world looks different when you change scale

The world looks different when you change scale

The world looks different when you change scale

The world looks different when you change scale

feather

The world looks different when you change scale

feather

bone

The world looks different when you change scale

feather

bone

The world is different on different scales

...Duh!

Micro Meso Macro

The world is different on different scales

...Duh!

Micro	Meso	Macro
Quantum	Classical	General Relativity

The world is different on different scales

Micro	Meso	Macro
Quantum	Classical	General Relativity
Observation	Sample	Population

The world is different on different scales

Duh!

Micro	Meso	Macro
Quantum	Classical	General Relativity
Observation	Sample	Population
Time series	Moving average	Trend

Informal definition of a fractal:

Geometric object

Informal definition of a fractal:

Geometric object Self-similar

Informal definition of a fractal:

Geometric object Self-similar

exactly

approximately
statistically

Informal definition of a fractal:

Geometric object Self-similar

exactly

approximately
statistically

Detailed at all scales

WHAT: Mathematical description

A definition

Definition (Mandelbrot)

A fractal is a subset $X \subseteq \mathbb{R}^{n}$ whose Hausdorff dimension is strictly larger than its Topolgical dimension.

This relies upon a definition of dimension.

A definition

Definition (Mandelbrot)

A fractal is a subset $X \subseteq \mathbb{R}^{n}$ whose Hausdorff dimension is strictly larger than its Topolgical dimension.

This relies upon a definition of dimension.
Specifying "dimension" turns out to be tricky...

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.
- Each point x : count the number $N_{S}(x)$ of T_{i} containing x.

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.
- Each point x : count the number $N_{S}(x)$ of T_{i} containing x.
- Maximum such number N_{S} is the order of the cover.

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.
- Each point x : count the number $N_{S}(x)$ of T_{i} containing x.
- Maximum such number N_{S} is the order of the cover.

- Refine the cover: break down the S_{i} into smaller pieces.

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.
- Each point x : count the number $N_{S}(x)$ of T_{i} containing x.
- Maximum such number N_{S} is the order of the cover.

- Refine the cover: break down the S_{i} into smaller pieces.
- $\exists N$: any cover can be refined to have order $\leq N$.

Topological dimension

- Cover of X : a list of open sets S_{i} with $X=S_{1} \cup \cdots \cup S_{n}$.
- Each point x : count the number $N_{S}(x)$ of T_{i} containing x.
- Maximum such number N_{S} is the order of the cover.

- Refine the cover: break down the S_{i} into smaller pieces.
- $\exists N$: any cover can be refined to have order $\leq N$.
- The topological dimension of X is $\operatorname{dim}_{\text {Top }}(X)=N-1$.

Box-counting dimension

Say we're working with $X \subseteq \mathbb{R}^{2}$ and given some small $r>0$.

- How many $r \times r$ squares do you need to cover X ?

Box-counting dimension

Say we're working with $X \subseteq \mathbb{R}^{2}$ and given some small $r>0$.

- How many $r \times r$ squares do you need to cover X ?
- Call the number $N(r)$; compute $N(1 / 1), N(1 / 2), N(1 / 3), N(1 / 4), \ldots$

Box-counting dimension

Say we're working with $X \subseteq \mathbb{R}^{2}$ and given some small $r>0$.

- How many $r \times r$ squares do you need to cover X ?
- Call the number $N(r)$; compute $N(1 / 1), N(1 / 2), N(1 / 3), N(1 / 4), \ldots$
- Example: if $X=$ unit square then $N(1 / n)=n^{2}$.

$$
1=1^{2}
$$

$$
2^{2}=4
$$

$$
3^{3}=9
$$

$$
4^{2}=16
$$

Box-counting dimension

Say we're working with $X \subseteq \mathbb{R}^{2}$ and given some small $r>0$.

- How many $r \times r$ squares do you need to cover X ?
- Call the number $N(r)$; compute $N(1 / 1), N(1 / 2), N(1 / 3), N(1 / 4), \ldots$
- Example: if $X=$ unit square then $N(1 / n)=n^{2}$.

$$
\begin{aligned}
1=1^{2} \quad 2^{2}=4 & 3^{3}=9 \quad 4^{2}=16 \\
N=(1 / n)^{2}=r^{-2} & \Longleftrightarrow \log N=-2 \log (r) \\
& \Longleftrightarrow \log N /-\log (r)=2
\end{aligned}
$$

Box-counting dimension

Example: $X=$ Great Britain's coastline

Box-counting dimension

Example: $X=$ Great Britain's coastline

Dimension defined by $\operatorname{dim}_{\text {Box }}(X)=\lim _{r \rightarrow 0} \frac{N(r)}{-\log (r)} \approx 1.25 \notin \mathbb{Z}!!$.

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

- Nice special case: similarity dimension (coming shortly)

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

- Nice special case: similarity dimension (coming shortly)

There are loads more to choose from. Choose the right tool for the job!

Too many dimensions

The "official" fractal dimension is the Hausdorff dimension

- Nice special case: similarity dimension (coming shortly)

There are loads more to choose from. Choose the right tool for the job!

- information dimension
- correlation dimension
- Assouad dimension
- packing dimension
- ...

HOW: Mathematical models

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated
 copy of the generator

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated copy of the generator
- Do the same to the new
subsegments

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated copy of the generator
- Do the same to the new subsegments
- Repeat until bored

A recipe for making fractals

- Need detail at all levels \& self-similarity
- To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

- Initial setup: a line segment
- Replace with a scaled \& rotated copy of the generator
- Do the same to the new
subsegments
- Repeat until bored

N

Limit called the Koch curve

Limit called the Koch curve

Infinite length $\quad(4 / 3)^{n} \rightarrow \infty$

Limit called the Koch curve

Infinite length
 $(4 / 3)^{n} \rightarrow \infty$

Encloses finite area

Limit called the Koch curve

Infinite length
 $(4 / 3)^{n} \rightarrow \infty$

Encloses finite area
Topological dimension 1

Limit called the Koch curve

Infinite length $\quad(4 / 3)^{n} \rightarrow \infty$
Encloses finite area
Topological dimension 1
Fractal dimension $\log (4) / \log (3) \approx 1.262$

Similarity dimension

Similarity dimension

Similarity dimension

Fractal $=4$ copies of itself at $1 / 3$ scale

Similarity dimension

Fractal $=4$ copies of itself at $1 / 3$ scale
Solve $1 / 3^{d}+1 / 3^{d}+1 / 3^{d}+1 / 3^{d}=1$

Similarity dimension

Fractal $=4$ copies of itself at $1 / 3$ scale
Solve $1 / 3^{d}+1 / 3^{d}+1 / 3^{d}+1 / 3^{d}=1$
$\operatorname{dim}_{\text {sim }}=\log 4 / \log 3$

Similarity dimension in general

Say our fractal K looks like

$$
K=K_{1} \sqcup K_{2} \sqcup \cdots \sqcup K_{n}
$$

Similarity dimension in general

Say our fractal K looks like

$$
K=K_{1} \sqcup K_{2} \sqcup \cdots \sqcup K_{n}
$$

- Each copy K_{i} is a scaled copy of K
(say at scale $r_{i}<1$)

Similarity dimension in general

Say our fractal K looks like

$$
K=K_{1} \sqcup K_{2} \sqcup \cdots \sqcup K_{n}
$$

- Each copy K_{i} is a scaled copy of K
(say at scale $r_{i}<1$)
- Solve $r_{1}^{d}+\cdots+r_{n}^{d}=1$ (e.g. numerically)

Similarity dimension in general

Say our fractal K looks like

$$
K=K_{1} \sqcup K_{2} \sqcup \cdots \sqcup K_{n}
$$

- Each copy K_{i} is a scaled copy of K
(say at scale $r_{i}<1$)
- Solve $r_{1}^{d}+\cdots+r_{n}^{d}=1$
(e.g. numerically)
- $\operatorname{dim}_{\text {sim }}$ is the unique solution d

Similarity dimension in general

Say our fractal K looks like

$$
K=K_{1} \sqcup K_{2} \sqcup \cdots \sqcup K_{n}
$$

- Each copy K_{i} is a scaled copy of K
(say at scale $r_{i}<1$)
- Solve $r_{1}^{d}+\cdots+r_{n}^{d}=1$ (e.g. numerically)
- $\operatorname{dim}_{\text {sim }}$ is the unique solution d

Webbrowser demo @ caldew:5000

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Cantor set C

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Cantor set C

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Cantor set C

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Basilica set \mathcal{B}
(an example of a "Julia set")

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Basilica set \mathcal{B}

(an example of a "Julia set")

Generalisations: graph replacement

- Currently: line segment \mapsto smaller segments
- Why not: edge in a graph \mapsto subgraph

Example: Basilica set \mathcal{B}

(an example of a "Julia set")

Generalisations: random flipping

- Currently: line segment \mapsto smaller segments

Generalisations: random flipping

- Currently: line segment \mapsto smaller segments
-Why not: randomly flip some of these line segments?

Generalisations: random flipping

- Currently: line segment \mapsto smaller segments
-Why not: randomly flip some of these line segments?

Example: random Koch curve

\qquad becomes

Generalisations: random flipping

- Currently: line segment \mapsto smaller segments
-Why not: randomly flip some of these line segments?

Example: random Koch curve

Randomness leads to an entire class of 'stochastic fractals':

- Brownian motion
- Self-avoiding walks/paths

Alternatives: L-systems

Alternatives: Strange attractors

Alternatives: Strange attractors

Alternatives: Escape time fractals

- Animation

Alternatives: Escape time fractals

Other ways to make fractals

Iterated function system: copy an object to shrunk
versions of itself
Stochastic fractals: detail defined by random movement or deformation

L-systems: based on rewriting strings, good for modelling plants

Strange attractors: points in a chaotic systems often get stuck in a fractal set

Escape time fractals: reapply a map and wait until it sends points to a limit or to ∞

WHY: is it just pretty pictures?

More convincing computer simulations

- Real world is more fractal than not

More convincing computer simulations

- Real world is more fractal than not
- Procedural generation: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

More convincing computer simulations

- Real world is more fractal than not
- Procedural generation: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- "Perlin noise", "diamond-square algorithm"

More convincing computer simulations

- Real world is more fractal than not
- Procedural generation: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- "Perlin noise", "diamond-square algorithm"
- Used in computer games; visual effects for TV and film (\downarrow Star Trek II)

More convincing computer simulations

- Real world is more fractal than not
- Procedural generation: Systematically generate landscapes, trees, grass, shrubs, coastlines, clouds, silhouettes, textures...

- "Perlin noise", "diamond-square algorithm"
- Used in computer games; visual effects for TV and film (\downarrow Star Trek II)
- A base for artists to detail, or for further processing

Source of 'weird' sets

- Pathological examples where intuition fails

Source of 'weird' sets

- Pathological examples where intuition fails
- Weierstrass function: $f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right)$

Source of 'weird' sets

- Pathological examples where intuition fails
- Weierstrass function: $f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right)$
- Space-filling curves: continuous map $[0,1] \rightarrow[0,1]^{2}$

A form of compression

- Need to walk through a grid with small coordinate changes?

A form of compression

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?

A form of compression

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?

A form of compression

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?
- Need a large surface area in a small space?

A form of compression

- Need to walk through a grid with small coordinate changes?
- Need to say that parts of an image look self-similar?
- Need a large amount of wire in a small space?
- Need a large surface area in a small space?
- Need a systematic way to make a rough surface?

In short, Fractals:

Shapes with built-in self-similarity

Shapes with built-in self-similarity Models often built iteratively

Shapes with built-in self-similarity Models often built iteratively

Also arise from dynamical systems

Shapes with built-in self-similarity Models often built iteratively

Also arise from dynamical systems
Aesthetically appear 'more natural'

Shapes with built-in self-similarity Models often built iteratively

Also arise from dynamical systems
Aesthetically appear 'more natural'
\Longrightarrow Pretty pictures!

Wikimedia images:

NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg

Fractal-plant.svg

Lorenz_attractor_yb.svg

LuChenAttractor3D.svg

Julia_dem_c=-0.1+0.651.png

WeierstrassFunction.svg

Others

- Maps from Open Street Map
- The last three aren't Creative Commons or Public domain:
- YouTube icon from YouTube's branding guidelines
- Basilica images from Belk, Forrest: Rearrangement Groups of Fractals @ arXiv:1010.03133
- Fractal sound barrier from
http://www.ipam.ucla.edu/research-articles/fractal-acoustic-barrier
- ${ }^{\text {LTEX }} \mathrm{X}$ file and source @ GitHub:DMRobertson/fractals
¡Muchas gracias!

