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WHAT: real world examples



Clouds are not spheres



Mountains are not cones



Coastlines are not circles



Bark is not smooth



Lightning doesn’t travel in a straight line



Loads of real-life systems
look rough or noisy; can we
quantify, model or simulate
this?



Hard to describe a coastline

Might want a differentiable
(smooth) curve

f : [0, 1] → R2

t 7→
(
x(t)
y(t)

)

• Pain to write down

• Doesn’t capture
“pointyness”

• Even more detail to
describe when zoomed
in
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The world looks different when you change scale
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The world is different on different scales

. . .Duh!
Micro Meso Macro

Quantum Classical General Relativity
Observation Sample Population
Time series Moving average Trend
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Informal definition of a fractal:

• Geometric object

• Self-similar
• exactly
• approximately
• statistically

• Detailed at all scales
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WHAT: Mathematical description



A definition

Definition (Mandelbrot)
A fractal is a subset X ⊆ Rn whose Hausdorff dimension is
strictly larger than its Topolgical dimension.

This relies upon a definition of dimension.

Specifying “dimension” turns out to be tricky. . .
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Topological dimension also Lebesgue or covering dimension

• Cover of X: a list of open sets Si with X = S1 ∪ · · · ∪ Sn.

• Each point x: count the number NS(x) of Ti containing x.
• Maximum such number NS is the order of the cover.

• Refine the cover: break down the Si into smaller pieces.
• \N : any cover can be refined to have order ≤ N.
• The topological dimension of X is dimTop(X) = N − 1.
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Box-counting dimension also Minkowski dimension

Say we’re working with X ⊆ R2 and given some small r > 0.

• How many r × r squares do you need to cover X?

• Call the number N(r); compute N(1/1),N(1/2),N(1/3),N(1/4), . . .
• Example: if X = unit square then N(1/n) = n2.

1 = 12 22 = 4 33 = 9 42 = 16

N = (1/n)2 = r−2 ⇐⇒ logN = −2 log(r)
⇐⇒ logN/− log(r) = 2
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Box-counting dimension also Minkowski dimension

Example: X = Great Britain’s coastline

Dimension defined by dimBox(X) = lim
r→0

N(r)
− log(r) ≈ 1.25 < Z !!.
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Too many dimensions

The “official” fractal dimension is the Hausdorff dimension

• Nice special case: similarity dimension (coming shortly)

There are loads more to choose from. Choose the right tool for
the job!

• information dimension

• correlation dimension

• Assouad dimension

• packing dimension

• . . .
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HOW: Mathematical models



A recipe for making fractals

• Need detail at all levels & self-similarity
• To achieve this: often the limit of a recursive construction

One recipe (of many): teragons

• Initial setup: a line segment

• Replace with a scaled & rotated
copy of the generator

• Do the same to the new
subsegments

• Repeat until bored
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Limit called the Koch curve

Infinite length (4/3)n→∞
Encloses finite area

Topological dimension 1
Fractal dimension log(4)/log(3) ≈ 1.262
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Similarity dimension

• K = K1 t K2 t K3 t K4
• Fractal = 4 copies of itself at 1/3 scale
• Solve 1/3d + 1/3d + 1/3d + 1/3d = 1
• dimSim = log 4/log 3
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Similarity dimension in general

Say our fractal K looks like

K = K1 t K2 t · · · t Kn

• Each copy Ki is a scaled copy of K (say at scale ri < 1)
• Solve rd1 + · · · + rdn = 1 (e.g. numerically)
• dimSim is the unique solution d

Webbrowser demo @ caldew:5000

http://caldew:5000
http://caldew:5000
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Generalisations: graph replacement

• Currently: line segment 7→ smaller segments

• Why not: edge in a graph 7→ subgraph

Example: Cantor set C

dimSim(C) = log 2/log 3 ≈ 0.6309 dimTop(C) = 0
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Generalisations: random flipping

• Currently: line segment 7→ smaller segments

• Why not: randomly flip some of these line segments?

Example: random Koch curve

becomes or

Randomness leads to an entire class of ‘stochastic fractals’:

• Brownian motion

• Self-avoiding walks/paths
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Alternatives: Escape time fractals Animation

https://www.youtube.com/watch?v=PD2XgQOyCCk


Alternatives: Escape time fractals



Other ways to make fractals

Iterated function system: copy an object to shrunk
versions of itself

Stochastic fractals: detail defined by random movement or
deformation

L-systems: based on rewriting strings, good for modelling
plants

Strange attractors: points in a chaotic systems often get
stuck in a fractal set

Escape time fractals: reapply a map and wait until it sends
points to a limit or to∞



WHY: is it just pretty pictures?



More convincing computer simulations

• Real world is more fractal than not

• Procedural generation: Systematically generate
landscapes, trees, grass, shrubs, coastlines, clouds,
silhouettes, textures. . .

• “Perlin noise“, “diamond-square algorithm”
• Used in computer games; visual effects for TV and film
( Star Trek II)

• A base for artists to detail, or for further processing

https://youtu.be/52XlyMbxxh8?t=106
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Source of ‘weird’ sets

• Pathological examples where intuition fails

• Weierstrass function: f (x) = ∑∞
n=0 an cos(bnπx)

• Space-filling curves: continuous map [0, 1]� [0, 1]2
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A form of compression

• Need to walk through a grid with small coordinate changes?

• Need to say that parts of an image look self-similar?
• Need a large amount of wire in a small space?
• Need a large surface area in a small space?
• Need a systematic way to make a rough surface?
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In short, Fractals:

• Shapes with built-in self-similarity

• Models often built iteratively

• Also arise from dynamical systems

• Aesthetically appear ‘more natural’

• =⇒ Pretty pictures!
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https://commons.wikimedia.org/wiki/File:Fractal-plant.svg
https://commons.wikimedia.org/wiki/File:Lorenz_attractor_yb.svg
https://commons.wikimedia.org/wiki/File:LuChenAttractor3D.svg
https://commons.wikimedia.org/wiki/File:Julia_dem_c=-0.1+0.651.png
https://commons.wikimedia.org/wiki/File:WeierstrassFunction.svg
https://commons.wikimedia.org/wiki/File:Peanocurve.svg
https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg
https://commons.wikimedia.org/wiki/File:FractalLandscape.jpg
https://commons.wikimedia.org/wiki/File:Fractal_terrain_texture.jpg
https://commons.wikimedia.org/wiki/File:BlueRidgePastures.jpg
https://commons.wikimedia.org/wiki/File:Cerebral_lobes.png
https://commons.wikimedia.org/wiki/File:Casts_of_lungs%2C_Marco_resin%2C_1951_(23966574469).jpg
https://commons.wikimedia.org/wiki/File:Casts_of_lungs%2C_Marco_resin%2C_1951_(23966574469).jpg
https://commons.wikimedia.org/wiki/File:Evening_London_(15884928867).jpg
https://commons.wikimedia.org/wiki/File:Antenna_flat_panel.png


Others

• Maps from Open Street Map

• The last three aren’t Creative Commons or Public domain:

• YouTube icon from YouTube’s branding guidelines

• Basilica images from Belk, Forrest: Rearrangement Groups
of Fractals@ arXiv:1010.03133

• Fractal sound barrier from
http://www.ipam.ucla.edu/research-articles/fractal-acoustic-barrier

• LATEX file and source @ GitHub:DMRobertson/fractals

https://www.openstreetmap.org
https://www.youtube.com/yt/brand/en-GB/using-logo.html
https://arxiv.org/abs/1510.03133
http://www.ipam.ucla.edu/research-articles/fractal-acoustic-barrier
https://github.com/DMRobertson/fractals


¡Muchas gracias!

rekt
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